Current hormonal ablation therapy, the mainstay treatment for advance prostate cancer, is palliative, due the development of androgen-independent growth. Androgen receptor (AR) is expressed in most prostate cancer cells and AR overexpression of AR is sufficient and necessary for androgen-independent growth, which provides strong rationale for developing novel therapies against advanced prostate cancer through downregulation of AR. Dr. Dong's laboratory has identified a novel synthetic compound 6-amino-2-[2-(4-tert- butyl-pnenoxy)-ethylsulfanyl]-1H-pyrimidin-4-one, named DL3 for simplicity, as a potent AR antagonist. DL3 inhibits dihydrotestosterone (DHT)-stimulated cell growth and gene expression in all prostate cancer cell lines tested, including androgen-independent cells and cells resistant to antiandrogens, flutamide (Flut) or nilutamide (Nilut). The inhibitory effects of DL3 are more potent than bicalutamide (Bical), Flut, and Nilut. It inhibits neither AR nuclear localization nor DHT-induced AR NH2-terminus and COOH-terminus interaction and has no detectable AR agonist activity. DL3 reduces AR stability and downregulates of AR protein expression. It competes with DHT but not estradiol for the binding to cells. Docking analysis using protein crystal structure of AR ligand-binding domain (LBD) implies that DL3 can bind to the LBD. These observations prompted Dr. Dong to hypothesize that DL3 is a novel AR antagonist that binds to AR and induces the formation of inactive AR transcription machinery and AR degradation, and, hence, interrupts AR signaling.
Three specific aims are proposed to test the hypothesis and to investigate efficacy of DL3 therapy against human prostate cancer cells in animals. In the specific aim 1, he will characterize the binding of DL3 to AR and identify amino acid residues of the DL3 binding site. He will determine the biochemical properties of the binding, investigate whether DL3 competes with DHT for AR binding, and identify amino acid residues of AR that interact with DL3. In the specific aim 2, he will investigate effects of DL3 on proteosome-mediated degradation of AR and assembly of AR transcription complex. He will determine effects of DL3 and Bical on AR stability, ubiquitination, and association with E3 ubiquitin ligase. By using the chromatin immunoprecipitation (ChIP) assay, he will investigate whether treatment with DL3 and Bical induce formation of transcription-inactive AR complex at the promoter region of prostate-specific antigen gene and identify cofactors in the complex. In the specific aim 3, Dr. Dong propose to investigate therapeutic effects of DL3 against human prostate cancer cells in mice. He will determine and compare effects of DL3 and Bical, alone or in combination with castration, on growth of tumors formed by both androgen-dependent and -independent cells and by cells refractory to Flut. He will determine DL3 distribution in tumor-bearing mice and correlate therapeutic effects with expression of AR and AR-target genes in tumors. These studies will firmly establish that DL3 is a novel AR antagonist and will enrich the understanding of mechanisms by which Bical interrupts AR signaling. Project Narrative Our preliminary studies have identified a novel synthetic compound 6-amino-2-[2-(4-tert- butyl-pnenoxy)-ethylsulfanyl]-1H-pyrimidin-4-one, named DL3 for simplicity. DL3 competitively inhibits the binding of DHT to human prostate cancer cells, but not estradiol to human breast cancer cells. It downregulates androgen receptor expression and suppresses androgen-induced cell growth and gene expression in prostate cancer cells. The proposed research will establish that DL3 is a novel AR antagonist, will elucidate mechanisms by which DL3 interrupts AR signaling, and will determine therapeutic effects of DL3 against human prostate cancer cells in mice.

Public Health Relevance

Our preliminary studies have identified a novel synthetic compound 6-amino-2-[2-(4-tertbutyl-pnenoxy)-ethylsulfanyl]-1H-pyrimidin-4-one, named DL3 for simplicity. DL3 competitively inhibits the binding of DHT to human prostate cancer cells, but not estradiol to human breast cancer cells. It downregulates androgen receptor expression and suppresses androgen-induced cell growth and gene expression in prostate cancer cells. The proposed research will establish that DL3 is a novel AR antagonist, will elucidate mechanisms by which DL3 interrupts AR signaling, and will determine therapeutic effects of DL3 against human prostate cancer cells in mice.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA131137-02
Application #
7684713
Study Section
Drug Discovery and Molecular Pharmacology Study Section (DMP)
Program Officer
Forry, Suzanne L
Project Start
2008-09-09
Project End
2013-07-31
Budget Start
2009-08-01
Budget End
2010-07-31
Support Year
2
Fiscal Year
2009
Total Cost
$323,700
Indirect Cost
Name
University of Cincinnati
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
041064767
City
Cincinnati
State
OH
Country
United States
Zip Code
45221
Dillehay, Kelsey L; Lu, Shan; Dong, Zhongyun (2014) Antitumor effects of a novel small molecule targeting PCNA chromatin association in prostate cancer. Mol Cancer Ther 13:2817-26
Cui, Lingling; Chen, Pingping; Tan, Zongqing et al. (2012) Hemostatic gelatin sponge is a superior matrix to matrigel for establishment of LNCaP human prostate cancer in nude mice. Prostate 72:1669-77
Tan, Zongqing; Wortman, Matthew; Dillehay, Kelsey L et al. (2012) Small-molecule targeting of proliferating cell nuclear antigen chromatin association inhibits tumor cell growth. Mol Pharmacol 81:811-9
Oleksowicz, Leslie; Liu, Yin; Bracken, R Bruce et al. (2012) Secretory phospholipase A2-IIa is a target gene of the HER/HER2-elicited pathway and a potential plasma biomarker for poor prognosis of prostate cancer. Prostate 72:1140-9
Kupert, Elena; Anderson, Marshall; Liu, Yin et al. (2011) Plasma secretory phospholipase A2-IIa as a potential biomarker for lung cancer in patients with solitary pulmonary nodules. BMC Cancer 11:513
Dong, Zhongyun; Liu, Yin; Scott, Kieran F et al. (2010) Secretory phospholipase A2-IIa is involved in prostate cancer progression and may potentially serve as a biomarker for prostate cancer. Carcinogenesis 31:1948-55
Lu, Shan; Tan, Zongqin; Wortman, Matthew et al. (2010) Preferential induction of G1 arrest in androgen-responsive human prostate cancer cells by androgen receptor signaling antagonists DL3 and antiandrogen bicalutamide. Cancer Lett 298:250-7
Lu, Shan; Tan, Zongqin; Wortman, Matt et al. (2010) Regulation of heat shock protein 70-1 expression by androgen receptor and its signaling in human prostate cancer cells. Int J Oncol 36:459-67