Enhancing cocaine metabolism by administration of cocaine esterases has been recognized as a promising treatment strategy for cocaine overdose and addiction. The esterase CocE is the most efficient native enzyme for metabolizing naturally occurring (-)-cocaine yet identified. Through catalysis of (-)-cocaine hydrolysis, CocE can both prevent and reverse extreme (-)- cocaine toxicity in rodent models and it has the potential to be developed into a chemically useful antagonist of the toxic and behavioral effects of (-)-cocaine. In order to optimize the efficacy of this potential anti-cocaine medication and minimize its possible side effects (particularly immunogenicity), we propose to improve the catalytic efficiency of CocE against (-)- cocaine. The higher the catalytic efficiency of the enzyme against (-)-cocaine, the lower the dose required to achieve therapeutic effectiveness and the decrease in dose can reduce the overall immunological response. Hence we will focus on the rational design, discovery, and preclinical testing of CocE mutants with an improved catalytic efficiency against (-)-cocaine. The rational design of high-activity mutants of CocE against (-)-cocaine requires a detailed understanding of the mechanism for CocE-catalyzed hydrolysis of cocaine. This mechanism can be understood by performing computational studies using the state-of-the-art computational techniques of molecular modeling, simulation, and calculation.
The specific aims i nclude: (1) Elucidation of the detailed mechanism and reaction coordinate and the corresponding free energy profiles for CocE-catalyzed hydrolysis of cocaine by performing quantum mechanical (QM) calculations, hybrid quantum mechanical/molecular mechanical (QM/MM) calculations, and molecular dynamics (MD) simulations, etc. (2) Design, discovery, and testing of CocE mutants with an improved catalytic efficiency against (-)-cocaine by using a recently developed novel computational design approach based on the transition state modeling and simulation to computationally evaluate a large number of hypothetical CocE mutants, followed by wet experimental tests including site-directed mutagenesis, protein expression and purification, and in vitro and in vivo activity tests. The long-term objective of this investigation will be to eventually develop an efficient anti-cocaine medication using a high-activity mutant of CocE.

Public Health Relevance

Enhancing cocaine metabolism by administration of cocaine esterase (CocE) has been recognized as a promising treatment strategy for cocaine overdose and addiction. The high-activity mutants of CocE to be designed and discovered in this project will eventually lead to an efficient anti-cocaine medication.

Agency
National Institute of Health (NIH)
Institute
National Institute on Drug Abuse (NIDA)
Type
Research Project (R01)
Project #
5R01DA025100-02
Application #
7674510
Study Section
Human Development Research Subcommittee (NIDA)
Program Officer
Shih, Ming L
Project Start
2008-08-15
Project End
2013-06-30
Budget Start
2009-07-01
Budget End
2010-06-30
Support Year
2
Fiscal Year
2009
Total Cost
$489,970
Indirect Cost
Name
University of Kentucky
Department
Pharmacology
Type
Schools of Pharmacy
DUNS #
939017877
City
Lexington
State
KY
Country
United States
Zip Code
40506
Yuan, Yaxia; Zheng, Fang; Zhan, Chang-Guo (2018) Improved Prediction of Blood-Brain Barrier Permeability Through Machine Learning with Combined Use of Molecular Property-Based Descriptors and Fingerprints. AAPS J 20:54
Zhang, Ting; Zheng, Xirong; Kim, Kyungbo et al. (2018) Blocking drug activation as a therapeutic strategy to attenuate acute toxicity and physiological effects of heroin. Sci Rep 8:16762
Chen, Xiabin; Deng, Jing; Cui, Wenpeng et al. (2018) Development of Fc-Fused Cocaine Hydrolase for Cocaine Addiction Treatment: Catalytic and Pharmacokinetic Properties. AAPS J 20:53
Kim, Kyungbo; Yao, Jianzhuang; Jin, Zhenyu et al. (2018) Kinetic characterization of cholinesterases and a therapeutically valuable cocaine hydrolase for their catalytic activities against heroin and its metabolite 6-monoacetylmorphine. Chem Biol Interact 293:107-114
Kim, Kyungbo; Zheng, Fang; Zhan, Chang-Guo (2018) Oligomerization and Catalytic Parameters of Human UDP-Glucuronosyltransferase 1A10: Expression and Characterization of the Recombinant Protein. Drug Metab Dispos 46:1446-1452
Zheng, Xirong; Zhou, Ziyuan; Zhang, Ting et al. (2017) Effectiveness of a Cocaine Hydrolase for Cocaine Toxicity Treatment in Male and Female Rats. AAPS J 20:3
Chen, Xiabin; Zheng, Xirong; Ding, Kai et al. (2017) A quantitative LC-MS/MS method for simultaneous determination of cocaine and its metabolites in whole blood. J Pharm Biomed Anal 134:243-251
Zhang, Ting; Zheng, Xirong; Zhou, Ziyuan et al. (2017) Clinical Potential of an Enzyme-based Novel Therapy for Cocaine Overdose. Sci Rep 7:15303
Jin, Yafei; Huang, Xiaoqin; Papke, Roger L et al. (2017) Design, synthesis, and biological activity of 5'-phenyl-1,2,5,6-tetrahydro-3,3'-bipyridine analogues as potential antagonists of nicotinic acetylcholine receptors. Bioorg Med Chem Lett 27:4350-4353
Zheng, Fang; Zhan, Chang-Guo (2016) Reply to Curry and Coombs: Benzoic acid is formed predominantly from the benzoyl ester hydrolysis in the presence of cocaine hydrolase. Proc Natl Acad Sci U S A 113:E2102-3

Showing the most recent 10 out of 87 publications