We have shown that inhibition of Notch signaling leads to regeneration of hair cells and provide partial functional recovery in the adult ear with hair cells damaged by noise-exposure. We have recently discovered that Wnt signaling provides a required stimulus for pushing both embryonic progenitor cells and adult stem cells to a hair cell fate. Wnt signaling is necessary for induction of Atoh1 in cells exposed to Notch inhibition, as demonstrated by an absence of Atoh1 upregulation when Wnt signaling is blocked. This suggests that Wnt signaling is required for hair cell differentiation in the cochlea in response to Notch inhibition. Similar to Notch inhibition, gene expression controlled by Wnt stimulates hair cell dfiferentiation, but it also appears to stimulate genes that lead to the replacement of supporting cells. One of these downstream targets, Lgr5, appears to mark cochlear progenitors capable of postnatal transdifferentiation into new hair cells. Our current knowledge of signaling pathways, and our development of the models needed for their manipulation allow a crucial series of experiments to test hypotheses on the nature of the signaling pathways required to elicit hair cell regeneration and recovery of function. Although our recent work has provided an important proof-of-principle for hair cell replacement in the adult, regeneration was limited and the transdifferentiated supporting cells were not replaced. Here, we assess the response of both the newborn and adult cochlea to inhibition of Notch after hair cell damage. We hypothesize that Wnt signaling after hair cell death leads to a partial regenerative response in the newborn cochlea and that signaling through these pathways does not reach levels necessary to initiate regeneration in the adult cochlea.
In Aim 1, we test our hypothesis about Wnt signaling in the newborn cochlea by both gain and loss of function studies for a role of Wnt in regeneration in response to Notch inhibition.
In Aim 2 we test whether Notch inhibition or ?-catenin upregulation in the damaged cochlea in adults, where we can measure hair cell regeneration, is accompanied by gene expression changes characteristic of regeneration.
In Aim 3, we test our hypothesis that forced activation of Wnt in combination with Notch inhibition will drive both supporting cell proliferation and transdifferentiation of new hair cells. We further test the idea that the regeneration we see after damage and inhibition of ?-secretase can only occur if Wnt signaling is active.

Public Health Relevance

Hair cells of the inner ear are responsible for detection of sound and motion. Loss of hair cells can be caused by excess noise, exposure to toxins, and aging, and is a major cause of hearing and balance disorders. In this proposal, we determine the role of signaling pathways in specific cochlear cells in the regeneration of lost hair cells. Te results could lead to new ways to treat these debilitating conditions.

Agency
National Institute of Health (NIH)
Institute
National Institute on Deafness and Other Communication Disorders (NIDCD)
Type
Research Project (R01)
Project #
5R01DC014089-02
Application #
9171949
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Freeman, Nancy
Project Start
2015-12-01
Project End
2020-11-30
Budget Start
2016-12-01
Budget End
2017-11-30
Support Year
2
Fiscal Year
2017
Total Cost
Indirect Cost
Name
Massachusetts Eye and Ear Infirmary
Department
Type
DUNS #
073825945
City
Boston
State
MA
Country
United States
Zip Code
02114
Zhang, Jingyuan; Wang, Quan; Abdul-Aziz, Dunia et al. (2018) ERBB2 signaling drives supporting cell proliferation in vitro and apparent supernumerary hair cell formation in vivo in the neonatal mouse cochlea. Eur J Neurosci 48:3299-3316
Yeh, Wei-Hsi; Chiang, Hao; Rees, Holly A et al. (2018) In vivo base editing of post-mitotic sensory cells. Nat Commun 9:2184
McLean, Will J; Yin, Xiaolei; Lu, Lin et al. (2017) Clonal Expansion of Lgr5-Positive Cells from Mammalian Cochlea and High-Purity Generation of Sensory Hair Cells. Cell Rep 18:1917-1929
Noguchi, Shuhei; Arakawa, Takahiro; Fukuda, Shiro et al. (2017) FANTOM5 CAGE profiles of human and mouse samples. Sci Data 4:170112
Rees, Holly A; Komor, Alexis C; Yeh, Wei-Hsi et al. (2017) Improving the DNA specificity and applicability of base editing through protein engineering and protein delivery. Nat Commun 8:15790
Kempfle, Judith S; Fiorillo, Benjamin; Kanumuri, Vivek V et al. (2017) Quantitative imaging analysis of transcanal endoscopic Infracochlear approach to the internal auditory canal. Am J Otolaryngol 38:518-520
Kempfle, Judith S; Turban, Jack L; Edge, Albert S B (2016) Sox2 in the differentiation of cochlear progenitor cells. Sci Rep 6:23293
Geng, Ruishuang; Noda, Teppei; Mulvaney, Joanna F et al. (2016) Comprehensive Expression of Wnt Signaling Pathway Genes during Development and Maturation of the Mouse Cochlea. PLoS One 11:e0148339
Kempfle, Judith; Kozin, Elliott D; Remenschneider, Aaron K et al. (2016) Endoscopic Transcanal Retrocochlear Approach to the Internal Auditory Canal with Cochlear Preservation: Pilot Cadaveric Study. Otolaryngol Head Neck Surg 154:920-923
Fujioka, Masato; Okano, Hideyuki; Edge, Albert S B (2015) Manipulating cell fate in the cochlea: a feasible therapy for hearing loss. Trends Neurosci 38:139-44