Erectile dysfunction is a major health problem that has a dramatic impact on the quality of life of many men and their sexual partners. Moreover, erectile dysfunction represents a spectrum of disease, ranging from partial to complete impotence, and affecting an estimated 18-30 million American men greater than or equal to 40 years of age. Medical treatment of this prevalent disease resulted in 400,000 outpatient visits and 30,000 hospital admissions, at total cost of $146 million in 1985 alone. Incomplete corporal smooth muscle relaxation is now widely recognized as a significant etiologic factor in a large proportion of impotent men. The general consensus is that incomplete corporal smooth muscle relaxation severely compromises trapping of blood in the corporal sinuses (because of incomplete closure of the venous outflow), resulting in a lack of rigidity. This condition is commonly referred to as corporal veno- occlusive erectile dysfunction. In vitro studies have documented that isolated human corporal tissue strips and cultured corporal smooth muscle cells provide a valid model for studying at least some aspects of the modulation of corporal smooth muscle tone in vivo. Observations both in vitro and in vivo demonstrated that intercellular communication through gap junctions, and current flow through membrane ion channels (i.e., namely Ca & K channels) are important modulators of corporal smooth muscle tone, and therefore, of erectile capacity. It seems that regardless of the diversity of causes of erectile dysfunction related to incomplete corporal smooth muscle relaxation, their effects might still be explained via their direct or indirect impact on gap junctions, K channels or Ca channels. Thus, in many ways, the improved understanding, diagnosis and treatment of erectile dysfunction is largely dependent on more detailed knowledge of how physiologically relevant drugs modulate these primary effectors of corporal smooth muscle tone. To directly address this issue we shall: l: a) Conduct electrophysiological studies on enzymatically dispersed and cultured corporal smooth muscle cells to evaluate the role of intercellular current flow in propagating and amplifying signals in the corpora. b) Microinject cultured and enzymatically dissociated cells as well as isolated tissue strips with gap junction permeant dyes and second messenger molecules to assess the role of metabolic coupling in propagating and amplifying signals in the corpora. c) Conduct molecular biological and immunocytochemical studies to characterize gap junctions between smooth muscle cells in situ and in culture. 2) Use patch clamp techniques to characterize the K and Ca channels in enzymatically dispersed and cultured corporal smooth muscle cells. 3) Assess action potential generation in vitro, using the sucrose gap technique.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
5R01DK046379-03
Application #
2430204
Study Section
Surgery, Anesthesiology and Trauma Study Section (SAT)
Project Start
1995-06-01
Project End
1999-05-31
Budget Start
1997-07-29
Budget End
1998-05-31
Support Year
3
Fiscal Year
1997
Total Cost
Indirect Cost
Name
Albert Einstein College of Medicine
Department
Urology
Type
Schools of Medicine
DUNS #
009095365
City
Bronx
State
NY
Country
United States
Zip Code
10461
Wang, H-Z; Brink, Peter R; Christ, George J (2006) Gap junction channel activity in short-term cultured human detrusor myocyte cell pairs: gating and unitary conductances. Am J Physiol Cell Physiol 291:C1366-76
Christ, George J; Day, Nancy S; Day, Michele et al. (2003) Increased connexin43-mediated intercellular communication in a rat model of bladder overactivity in vivo. Am J Physiol Regul Integr Comp Physiol 284:R1241-8
Christ, George J (2002) K channels as molecular targets for the treatment of erectile dysfunction. J Androl 23:S10-9
Venkateswarlu, K; Giraldi, A; Zhao, W et al. (2002) Potassium channels and human corporeal smooth muscle cell tone: diabetes and relaxation of human corpus cavernosum smooth muscle by adenosine triphosphate sensitive potassium channel openers. J Urol 168:355-61
Spektor, Mariya; Rodriguez, Ramon; Rosenbaum, Raymond S et al. (2002) Potassium channels and human corporeal smooth muscle cell tone: further evidence of the physiological relevance of the Maxi-K channel subtype to the regulation of human corporeal smooth muscle tone in vitro. J Urol 167:2628-35
Wang, H Z; Christ, G J (2001) K(ATP) channel currents regulate membrane potential in freshly isolated human and rat bladder smooth muscle cells. Urology 57:110
Melman, A; Christ, G J (2001) Integrative erectile biology. The effects of age and disease on gap junctions and ion channels and their potential value to the treatment of erectile dysfunction. Urol Clin North Am 28:217-31, vii
Wang, H Z; Day, N; Valcic, M et al. (2001) Intercellular communication in cultured human vascular smooth muscle cells. Am J Physiol Cell Physiol 281:C75-88
Wang, H Z; Lee, S W; Day, N S et al. (2001) Gap junction channel activity in cultured human bladder smooth muscle cell pairs: gating and unitary conductances. Urology 57:111
Huang, H; Petkova, S B; Pestell, R G et al. (2000) Trypanosoma cruzi infection (Chagas' disease) of mice causes activation of the mitogen-activated protein kinase cascade and expression of endothelin-1 in the myocardium. J Cardiovasc Pharmacol 36:S148-50

Showing the most recent 10 out of 28 publications