Interstitial cystitis (IC) is a painful bladder disorder associated with irritative voiding systems and non-specific cystoscopic and pathologic findings. IC and other painful conditions affect over 300,000 Americans and account for substantial health care expense, yet are poorly understood and refractory to most therapies. The inability to detect a sole cause for IC may reflect multiple etiologies and/or a heterogeneous disorder. The sympathetic nervous system has been implicated in the pathogenesis and maintenance of several pain disorders including IC. Mechanisms for this involvement resemble those for reflex sympathetic dystrophy. We propose that IC is one of a number of pain disorders involving altered neural function and that different transient inflammatory stimuli can lead to short-term, and in some cases long-term, alterations in neural pathways to the bladder. The research proposed will demonstrate that inflammatory stimuli affect the morphology and function of sympathetic nerves in the bladder and pelvic ganglia and examine mechanisms initiating altered sympathetic innervation. Changes in the amount and distribution of peripheral sympathetic nerves in the rat bladder will be measured by norepinephrine content and catecholamine fluorescence after chemical, mechanical, bacterial and immunological irritation of the bladder. The function of sympathetic nerves to the bladder will be examined using in vitro muscle bath studies, and in vivo electrophysiologic and urodynamic preparations. Laser Doppler measurements of blood flow in the bladder wall will also be used to monitor the effect of hypogastric nerve and sympathetic chain stimulation on blood flow before and after inflammation. Immunohistochemical and morphological characterization of sympathetic neurons in the pelvic ganglia will also be undertaken. Synaptic transmission by sympathetic nerves in the pelvic ganglia will be investigated because alterations in sympathetic nerves may affect not only sensory nerves but also motor input to the bladder. These mechanisms may be accentuated following inflammation. The role of nerve growth factor (NGF) in inflammation-induced neural plasticity involving sympathetic pathways will be tested by blockade with receptor (trk A) antagonists and by induced immunity to endogenous NGF. Other experiments will determine the cellular sources of NGF in the bladder and whether urothelial cells interact with NGF-producing detrusor. By identifying the changes in sympathetic nerves and the mechanism for these alterations, this study will provide insight into how an inflammatory stimulus in the lower urinary tract alters neural function. Understanding the alterations in neural function may provide not only a mechanistic explanation for changes in bladder sensation, but may also lead to novel therapies for irritative disorders of the lower urinary tract.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
5R01DK049431-02
Application #
2150181
Study Section
Diabetes, Endocrinology and Metabolic Diseases B Subcommittee (DDK)
Project Start
1994-09-01
Project End
1998-08-31
Budget Start
1995-09-01
Budget End
1996-08-31
Support Year
2
Fiscal Year
1995
Total Cost
Indirect Cost
Name
University of Virginia
Department
Urology
Type
Schools of Medicine
DUNS #
001910777
City
Charlottesville
State
VA
Country
United States
Zip Code
22904
Clemow, D B; Steers, W D; Tuttle, J B (2000) Stretch-activated signaling of nerve growth factor secretion in bladder and vascular smooth muscle cells from hypertensive and hyperactive rats. J Cell Physiol 183:289-300
Sherer, T B; Clemow, D B; Tuttle, J B (2000) Calcium homeostasis and nerve growth factor secretion from vascular and bladder smooth muscle cells. Cell Tissue Res 299:201-11
Steers, W D; Clemow, D B; Persson, K et al. (1999) Observations from the spontaneously hypertensive rat. Insight into NGF regulation and noradrenergic hyper-innervation in the lower urinary tract. Adv Exp Med Biol 462:283-92;discussion 311-20
Clemow, D B; Spitsbergen, J M; McCarty, R et al. (1999) Altered NGF regulation may link a genetic predisposition for hypertension with hyperactive voiding. J Urol 161:1372-7
Clemow, D B; Tuttle, J B (1998) Effects of growth rate and cell density on nerve growth factor secretion in cultures of vascular and bladder smooth muscle cells from hypertensive and hyperactive rats. Cell Tissue Res 294:431-8
Sherer, T B; Neff, P S; Tuttle, J B (1998) Increased nerve growth factor mRNA stability may underlie elevated nerve growth factor secretion from hypertensive vascular smooth muscle cells. Brain Res Mol Brain Res 62:167-74
Clemow, D B; Spitsbergen, J M; McCarty, R et al. (1998) Arterial nerve growth factor (NGF) mRNA, protein, and vascular smooth muscle cell NGF secretion in hypertensive and hyperactive rats. Exp Cell Res 244:196-205
Spitsbergen, J M; Clemow, D B; McCarty, R et al. (1998) Neurally mediated hyperactive voiding in spontaneously hypertensive rats. Brain Res 790:151-9
Clemow, D B; Steers, W D; McCarty, R et al. (1998) Altered regulation of bladder nerve growth factor and neurally mediated hyperactive voiding. Am J Physiol 275:R1279-86
Clemow, D B; McCarty, R; Steers, W D et al. (1997) Efferent and afferent neuronal hypertrophy associated with micturition pathways in spontaneously hypertensive rats. Neurourol Urodyn 16:293-303

Showing the most recent 10 out of 11 publications