The central hypothesis presented here holds that steroid hormone transit generally, and vitamin D metabolite transit specifically, into and within its metabolizing and/or target cell does not depend on the random movement of small, lipid-soluble, easily diffusible molecules. Rather, there exists a family of molecular chaperones that orchestrate the directional movement of vitamin D molecules to specific cellular destinations. It is proposed that this family of molecular shuttle proteins to be the hsp-70-related intracellular vitamin D binding proteins (IDBPs) discovered in this laboratory. Confirmation of this central hypothesis requires that four corollary hypotheses be proved true: 1] IDBPs bind 25-hydroxylased vitamin D metabolites with sufficient capacity; 2] a favorable affinity gradient exists between and among intracellular binding proteins (i.e. megalin- bound serum vitamin D binding protein, other IDBPs, the vitamin- D-hydroxylases, vitamin D receptor) to facilitate the movement of ligand from one protein to the next; 3] a specific intermolecular interaction exists between the binding proteins that would narrow the diffusion distance for ligand exchange; and 4] altered expression of IDBPs must result in a definable effect on vitamin D metabolism or action.
Specific Aim 1 will seek to prove that IDBPs are acceptor and delivery proteins for internalized vitamin D molecules by: 1] investigating the correlative traffic of fluorescently-labeled vitamin D metabolites and IDBPs within the cell; and 2] expanding our preliminary understanding of the specific intermolecular interaction of IDBPs with megalin and the vitamin-D-hydroxylases.
Specific Aim 2 is designed to link the physical interactions described in Specific Aim 1 with a functional consequence by: 1] confirming that 1,25(OH)2D and 24,25(OH)2D production are dependent in part upon IDBP-directed delivery of substrate to the vitamin-D-hydroxylases; and 2] creating in vivo a transgenic mouse model of targeted overexpression of IDBP which recapitulates the functional observations made in vitro. It is anticipated that thus work will lay the foundation for an understanding of a previously unrecognized mode of control over the intracellular trafficking, metabolism and action of sterol/steroid/retinoid/prostanoid hormones that is relevant to both human physiology and disease. Specifically, the current work will help to develop therapeutic strategies to counter common disease states that are worsened by vitamin D deficiency or resistance (i.e., osteoporosis) or that are improved or stabilized by enhancement of local vitamin D metabolite synthesis and action (i.e., leukemia, breast cancer, prostate cancer, psoriasis, etc.).

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
5R01DK058891-04
Application #
6785919
Study Section
Oral Biology and Medicine Subcommittee 1 (OBM)
Program Officer
Malozowski, Saul N
Project Start
2001-09-01
Project End
2006-08-31
Budget Start
2004-09-01
Budget End
2006-08-31
Support Year
4
Fiscal Year
2004
Total Cost
$344,250
Indirect Cost
Name
Cedars-Sinai Medical Center
Department
Type
DUNS #
075307785
City
Los Angeles
State
CA
Country
United States
Zip Code
90048
Tumanov, Alexei V; Koroleva, Ekaterina P; Guo, Xiaohuan et al. (2011) Lymphotoxin controls the IL-22 protection pathway in gut innate lymphoid cells during mucosal pathogen challenge. Cell Host Microbe 10:44-53
Washburn, Michael L; Kovalev, Grigoriy I; Koroleva, Ekaterina et al. (2010) LIGHT induces distinct signals to clear an AAV-expressed persistent antigen in the mouse liver and to induce liver inflammation. PLoS One 5:e10585
Wang, Yugang; Zhu, Mingzhao; Yu, Ping et al. (2010) Promoting immune responses by LIGHT in the face of abundant regulatory T cell inhibition. J Immunol 184:1589-95
Wang, Yugang; Koroleva, Ekaterina P; Kruglov, Andrei A et al. (2010) Lymphotoxin beta receptor signaling in intestinal epithelial cells orchestrates innate immune responses against mucosal bacterial infection. Immunity 32:403-13
Miller, Mendy L; Sun, Yonglian; Fu, Yang-Xin (2009) Cutting edge: B and T lymphocyte attenuator signaling on NKT cells inhibits cytokine release and tissue injury in early immune responses. J Immunol 183:32-6
Wang, Yugang; Zhu, Mingzhao; Miller, Mendy et al. (2009) Immunoregulation by tumor necrosis factor superfamily member LIGHT. Immunol Rev 229:232-43
Zhao, Jie; Kim, Kwang Dong; Yang, Xuanming et al. (2008) Hyper innate responses in neonates lead to increased morbidity and mortality after infection. Proc Natl Acad Sci U S A 105:7528-33
Kim, Kwang Dong; Zhao, Jie; Auh, Sogyong et al. (2007) Adaptive immune cells temper initial innate responses. Nat Med 13:1248-52
Adams, John S; Chen, Hong; Chun, Rene et al. (2007) Substrate and enzyme trafficking as a means of regulating 1,25-dihydroxyvitamin D synthesis and action: the human innate immune response. J Bone Miner Res 22 Suppl 2:V20-4
Plant, Sheila R; Iocca, Heather A; Wang, Ying et al. (2007) Lymphotoxin beta receptor (Lt betaR): dual roles in demyelination and remyelination and successful therapeutic intervention using Lt betaR-Ig protein. J Neurosci 27:7429-37

Showing the most recent 10 out of 18 publications