Principal Investigator/Program Director (Last, first, middle): Yee, Vivien RESEARCH &RELATED Other Project Information 1. * Are Human Subjects Involved? m Yes l No 1.a. If YES to Human Subjects Is the IRB review Pending? m Yes m No IRB Approval Date: Exemption Number: 1 2 3 4 5 6 Human Subject Assurance Number 2. * Are Vertebrate Animals Used? m Yes l No 2.a. If YES to Vertebrate Animals Is the IACUC review Pending? m Yes m No IACUC Approval Date: Animal Welfare Assurance Number 3. * Is proprietary/privileged information m Yes l No included in the application? 4.a.* Does this project have an actual or potential impact on m Yes l No the environment? 4.b. If yes, please explain: 4.c. If this project has an actual or potential impact on the environment, has an exemption been authorized or an environmental assessment (EA) or environmental impact statement (EIS) been performed? m Yes m No 4.d. If yes, please explain: 5.a.* Does this project involve activities outside the U.S. or m Yes l No partnership with International Collaborators? 5.b. If yes, identify countries: 5.c. Optional Explanation: 6. * Project Summary/Abstract 9839-summary.pdf Mime Type: application/pdf 7. * Project Narrative 5460-narrative.pdf Mime Type: application/pdf 8. Bibliography &References Cited 6411-prop_references.pdf Mime Type: application/pdf 9. Facilities &Other Resources 8147-facilities_yee.pdf Mime Type: application/pdf 10. Equipment 3169-equipment_yee.pdf Mime Type: application/pdf Tracking Number: Other Information Page 5 OMB Number: 4040-0001 Expiration Date: 04/30/2008 Principal Investigator/Program Director (Last, first, middle): Yee, Vivien Biotin-dependent carboxylases use a covalently attached biotin cofactor to transport carbon dioxide as carboxybiotin. The four human biotin-dependent carboxylases are large multi-enzyme complexes that play central roles in metabolic pathways such as oxidation of odd-chain fatty acids, catabolism of branched amino acids, fatty acid synthesis, and gluconeogenesis. Mutations in three of the human biotin-dependent carboxylase genes are associated with enzyme deficiencies and the resulting metabolic and developmental disorders propionic acidemia, 3-methylcrotonylglycinuria, and lactic acidemia. Structure-function studies of these enzymes are very valuable in understanding mechanisms of assembly and catalysis, by investigating the organization of these multi-enzyme complexes, the active

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Research Project (R01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-MSFE-S (01))
Program Officer
Sechi, Salvatore
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Case Western Reserve University
Schools of Medicine
United States
Zip Code
Yu, Lu; Lee, Seung-Joo; Yee, Vivien C (2015) Crystal Structures of Polymorphic Prion Protein ?1 Peptides Reveal Variable Steric Zipper Conformations. Biochemistry 54:3640-8
Souri, Masayoshi; Yee, Vivien C; Fujii, Noriko et al. (2012) Molecular modeling predicts structural changes in the A subunit of factor XIII caused by two novel mutations identified in a neonate with severe congenital factor XIII deficiency. Thromb Res 130:506-10
Bentley, Amber A; Merkulov, Sergei M; Peng, Yi et al. (2012) Chimeric glutathione S-transferases containing inserts of kininogen peptides: potential novel protein therapeutics. J Biol Chem 287:22142-50
Maeda, Shoko; Zhang, Wei Guang; Souri, Masayoshi et al. (2012) Impaired dimer assembly and decreased stability of naturally recurring R260C mutant A subunit for coagulation factor XIII. J Biochem 152:471-8
Lee, Seungjoo; Antony, Lizamma; Hartmann, Rune et al. (2010) Conformational diversity in prion protein variants influences intermolecular beta-sheet formation. EMBO J 29:251-62
Collard, Francois; Zhang, Jianye; Nemet, Ina et al. (2008) Crystal structure of the deglycating enzyme fructosamine oxidase (amadoriase II). J Biol Chem 283:27007-16