Biotin-dependent carboxylases use a covalently attached biotin cofactor to transport carbon dioxide as carboxybiotin. The four human biotin-dependent carboxylases are large multi-enzyme complexes that play central roles in metabolic pathways such as oxidation of odd-chain fatty acids, catabolism of branched amino acids, fatty acid synthesis, and gluconeogenesis. Mutations in three of the human biotin-dependent carboxylase genes are associated with enzyme deficiencies and the resulting metabolic and developmental disorders propionic acidemia, 3-methylcrotonylglycinuria, and lactic acidemia. Structure-function studies of these enzymes are very valuable in understanding mechanisms of assembly and catalysis, by investigating the organization of these multi-enzyme complexes, the active site features and residues important for enzyme function, and the possible structural and functional consequences of missense mutations identified in deficiency patients. Due to its relative ease of isolation and availability for in vitro studies, the transcarboxylase multi-enzyme complex from propionic acid bacteria has long served as a model system for the human biotin- dependent carboxylases. This application focuses on structure-function studies of the bacterial transcarboxylase and on two human enzymes, propionyl-CoA carboxylase and methylcrotonyl-CoA carboxylase. The broad objective is to carry out structure-function studies of these enzymes in order to better understand their assembly as multi-enzyme complexes and their mechanisms of catalytic activity.
The specific aims are: 1. To investigate the mechanisms of biotin carboxylation and decarboxylation in the transcarboxylase 12S and 5S subunits respectively, using a combination of X- ray crystallography and mutagenesis. 2. To probe the relevance of active site lysine carbamylation in the mechanism of the carboxyltransferase reaction catalyzed by the transcarboxylase 5S subunit using a combination of biophysical and biochemical methods. 3. To pursue high resolution structures of multi-subunit forms of transcarboxylase and of the human enzymes propionyl-CoA carboxylase and methylcrotonyl-CoA carboxylase. These structures will provide unprecedented views of subunit- subunit interfaces and details of the human enzymes, but will also serve as more accurate templates for the computational modeling of the possible molecular consequences of human acidemia mutations.Biotin-dependent enzymes are important in human metabolism. Mutations which alter their genes are found in patients with metabolic and developmental disorders. Investigating the structure-function relationships of these enzymes will aid understanding of how they assemble and function, and of how mutations may cause disease.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
5R01DK075897-04
Application #
8009397
Study Section
Special Emphasis Panel (ZRG1-MSFE-S (01))
Program Officer
Sechi, Salvatore
Project Start
2008-01-01
Project End
2012-12-31
Budget Start
2011-01-01
Budget End
2012-12-31
Support Year
4
Fiscal Year
2011
Total Cost
$307,751
Indirect Cost
Name
Case Western Reserve University
Department
Biochemistry
Type
Schools of Medicine
DUNS #
077758407
City
Cleveland
State
OH
Country
United States
Zip Code
44106
Yu, Lu; Lee, Seung-Joo; Yee, Vivien C (2015) Crystal Structures of Polymorphic Prion Protein ?1 Peptides Reveal Variable Steric Zipper Conformations. Biochemistry 54:3640-8
Souri, Masayoshi; Yee, Vivien C; Fujii, Noriko et al. (2012) Molecular modeling predicts structural changes in the A subunit of factor XIII caused by two novel mutations identified in a neonate with severe congenital factor XIII deficiency. Thromb Res 130:506-10
Bentley, Amber A; Merkulov, Sergei M; Peng, Yi et al. (2012) Chimeric glutathione S-transferases containing inserts of kininogen peptides: potential novel protein therapeutics. J Biol Chem 287:22142-50
Maeda, Shoko; Zhang, Wei Guang; Souri, Masayoshi et al. (2012) Impaired dimer assembly and decreased stability of naturally recurring R260C mutant A subunit for coagulation factor XIII. J Biochem 152:471-8
Lee, Seungjoo; Antony, Lizamma; Hartmann, Rune et al. (2010) Conformational diversity in prion protein variants influences intermolecular beta-sheet formation. EMBO J 29:251-62
Collard, Francois; Zhang, Jianye; Nemet, Ina et al. (2008) Crystal structure of the deglycating enzyme fructosamine oxidase (amadoriase II). J Biol Chem 283:27007-16