There is a highly significant increase in mortality from cardiovascular disease due to accelerated development of atherosclerosis and vascular calcification in people with chronic kidney disease. Traditional risk factors for cardiovascular disease don't entirely explain these accelerated vascular pathologies. We have shown that there is accelerated development of atherosclerosis and vascular calcification in mice that are deficient in osteoprotegerin, a decoy receptor for the receptor activator of NFkB ligand (RANKL). RANK-RANKL plays an essential role in bone homeostasis by stimulating the differentiation of osteoclasts. We have also shown that uremic LDLR-/- mice fed a high fat diet have accelerated atherosclerotic lesion development and increased expression of RANK in the aorta. Furthermore, treatment of macrophages and dendritic cells with RANKL stimulates the secretion of pro-inflammatory cytokines. We now hypothesize that the accelerated development of atherosclerosis and vascular calcification in chronic kidney disease may be due to increased RANKL and the stimulation of RANK signaling in macrophages and dendritic cells. We will test this hypothesis with 2 specific aims.
In aim 1, we will determine the signature of secreted proteins using shot-gun proteomics and the profile of expressed genes using microarrays in macrophages and dendritic cells from uremic mice and monocytes from people with chronic kidney disease as well as in macrophages and dendritic cells treated with RANKL in order to determine which pro-atherosclerotic and pro-calcification pathways are activated and may account for the accelerated vascular disease. In the second aim, we will transplant bone marrow from mice that are deficient in RANK into uremic mice and treat uremic mice with an anti-RANKL therapeutic (OPG-Fc) to determine whether blocking RANKL can protect against the accelerated atherosclerosis and vascular calcification that occurs with chronic kidney disease.

Public Health Relevance

It is now estimated that over 15% of the population of the United States have chronic kidney disease (CKD). There is a highly significant increase in mortality from cardiovascular disease due to accelerated development of atherosclerosis and vascular calcification in people with CKD and traditional risk factors for cardiovascular disease do not entirely explain this increase in cardiovascular mortality. Thus, there is a continuing need to define and explore new pathways associated with CKD that will help explain the increased cardiovascular risk and lead to new and unique therapeutic approaches.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
5R01DK094434-04
Application #
8866391
Study Section
Vascular Cell and Molecular Biology Study Section (VCMB)
Program Officer
Abbott, Kevin C
Project Start
2012-08-15
Project End
2016-06-30
Budget Start
2015-07-01
Budget End
2016-06-30
Support Year
4
Fiscal Year
2015
Total Cost
Indirect Cost
Name
University of Washington
Department
Pathology
Type
Schools of Medicine
DUNS #
605799469
City
Seattle
State
WA
Country
United States
Zip Code
98195
Yahagi, Kazuyuki; Kolodgie, Frank D; Lutter, Christoph et al. (2017) Pathology of Human Coronary and Carotid Artery Atherosclerosis and Vascular Calcification in Diabetes Mellitus. Arterioscler Thromb Vasc Biol 37:191-204
Otsuka, Fumiyuki; Kramer, Miranda C A; Woudstra, Pier et al. (2015) Natural progression of atherosclerosis from pathologic intimal thickening to late fibroatheroma in human coronary arteries: A pathology study. Atherosclerosis 241:772-82
Callegari, Andrea; Coons, Matthew L; Ricks, Jerry L et al. (2014) Increased calcification in osteoprotegerin-deficient smooth muscle cells: Dependence on receptor activator of NF-?B ligand and interleukin 6. J Vasc Res 51:118-31
Virmani, Renu; Joner, Michael; Sakakura, Kenichi (2014) Recent highlights of ATVB: calcification. Arterioscler Thromb Vasc Biol 34:1329-32
Otsuka, Fumiyuki; Sakakura, Kenichi; Yahagi, Kazuyuki et al. (2014) Has our understanding of calcification in human coronary atherosclerosis progressed? Arterioscler Thromb Vasc Biol 34:724-36
Callegari, A; Coons, M L; Ricks, J L et al. (2013) Bone marrow- or vessel wall-derived osteoprotegerin is sufficient to reduce atherosclerotic lesion size and vascular calcification. Arterioscler Thromb Vasc Biol 33:2491-500