A major goal in neuroscience is to understand the formation and development of synapses, the tiny membrane specializations that enable nerve cells to communicate with each other. The sequence of molecular signals leading to synapse formation (""""""""synaptogenesis"""""""") is qualitatively well known for the more accessible neuromuscular junction (NMJ) [2]. However, very little is known of the quantities (concentration, duration, onset, etc.) of the various neurochemical signals involved in synaptogenesis. Intriguingly, all but one of the axons innervating a given myotube at birth retract after a period of ~1 week as a result of a synaptic competition process that remains, for lack of quantitative methods, poorly understood. Our overall objective is to uncover some of the rules governing the formation and elimination of synapses at the NMJ using a microfluidic cell culture system developed under a previous R01 (which we seek to renew for the first time). Our approach is based on substituting the presynaptic neuron by an artificial microfluidic device that delivers known doses of various synaptogenic neurochemicals to micrometer-scale areas of the membrane of cultured myotubes. We will focus on the three key factors - agrin, neuregulin, and the neurotransmitter acetylcholine (ACh) - secreted by the nerve tip during synaptogenesis. We will measure muscle cell responses that are specific to ACh receptors (AChRs), such as AChR aggregation/disaggregation, degradation/synthesis, insertion, co-localization with other receptors and cytoskeletal proteins, intracellular signaling pathways, etc. Under previous support, we have developed a microfluidic mimic of the innervation process that allows for focally stimulating >80 single, isolated (""""""""microengineered"""""""") myotubes using laminar flow streams (orthogonal to the myotubes). We have found that a) focal application of agrin entices myotubes to recruit new AChRs to the stimulated area;b) when the microtracks are formed with Matrigel, a basal lamina extract, the microengineered myotubes display AChR clusters of complex, in-vivo-like morphologies even before agrin is applied, similarly to what happens in vivo;and c) when agrin is focally applied to those agrin-predating clusters, AChRs are degraded at reduced rates, suggesting that a putative role for agrin in vivo is to help stabilize AChRs. We seek to continue these investigations by studying the dynamics and spatial patterns of various AChR-specific responses upon (competitive, synergistic, or combinatorial) stimulation with agrin, neuregulin, and ACh.

Public Health Relevance

The sequence of molecular signals leading to synapse formation (synaptogenesis) is qualitatively well known, but a quantitative description is lacking because present experimental setups for the study of synaptic development do not allow for a precise control over the many variables involved in synaptogenesis. We will use a device that mimicks the local secretion of neurochemicals onto muscle cells (thereby the device will be pretending to be a neuron). By manipulating the variables involved in the formation of the synapse, we will be able to quantitatively describe and understand the mechanisms responsible for stabilization and competition observed at synaptic sites during development and may provide valuable insights on other neurological processes where synapse formation is critical such as in neurological diseases, memory formation, and learning.

Agency
National Institute of Health (NIH)
Institute
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Type
Research Project (R01)
Project #
5R01EB001474-09
Application #
8490703
Study Section
Neurotechnology Study Section (NT)
Program Officer
Korte, Brenda
Project Start
2003-08-05
Project End
2014-05-31
Budget Start
2013-06-01
Budget End
2014-05-31
Support Year
9
Fiscal Year
2013
Total Cost
$323,091
Indirect Cost
$73,873
Name
University of Washington
Department
Biomedical Engineering
Type
Schools of Engineering
DUNS #
605799469
City
Seattle
State
WA
Country
United States
Zip Code
98195
Fleischhacker, Angela S; Stubna, Audria; Hsueh, Kuang-Lung et al. (2012) Characterization of the [2Fe-2S] cluster of Escherichia coli transcription factor IscR. Biochemistry 51:4453-62
Tenstad, Ellen; Tourovskaia, Anna; Folch, Albert et al. (2010) Extensive adipogenic and osteogenic differentiation of patterned human mesenchymal stem cells in a microfluidic device. Lab Chip :
Ozhogina, Olga A; Bominaar, Emile L (2009) Characterization of the kringle fold and identification of a ubiquitous new class of disulfide rotamers. J Struct Biol 168:223-33
Sidorova, Julia M; Li, Nianzhen; Schwartz, David C et al. (2009) Microfluidic-assisted analysis of replicating DNA molecules. Nat Protoc 4:849-61
Martinho, Marlène; Xue, Genqiang; Fiedler, Adam T et al. (2009) Mössbauer and DFT study of the ferromagnetically coupled diiron(IV) precursor to a complex with an Fe(IV)(2)O(2) diamond core. J Am Chem Soc 131:5823-30
Tourovskaia, Anna; Li, Nianzhen; Folch, Albert (2008) Localized acetylcholine receptor clustering dynamics in response to microfluidic focal stimulation with agrin. Biophys J 95:3009-16
Kosar, T Fettah; Tourovskaia, Anna; Figueroa-Masot, Xavier et al. (2006) A nanofabricated planar aperture as a mimic of the nerve-muscle contact during synaptogenesis. Lab Chip 6:632-8
Tourovskaia, Anna; Figueroa-Masot, Xavier; Folch, Albert (2005) Differentiation-on-a-chip: a microfluidic platform for long-term cell culture studies. Lab Chip 5:14-9