In this competing renewal grant application entitled Human MRI to 9.4T and Beyond, the emphasis is on Beyond. The current grant now concluding supported the development of whole body imaging at 7T, and human head imaging to 9.4T. While refinements continue, the aims of demonstrating feasibility of human MRI at these highest field strengths were achieved. The development and advancement of parallel transmit, parallel transmitters, multi-channel transmission line arrays and B1 shimming were key technologies and methodologies to make these feats possible. Now, with the development of two new whole body MR systems, one at 10.5T for the University of Minnesota, and the other at 11.7T for CEA Neurospin in Saclay, France, a pair of new highest field MR systems are scheduled for delivery. As was the case with 7T and 9.4T, and for 3T and 4T before, magnet technology has often preceded radiofrequency technology in the evolution of MRI. Field strength has stepped ahead of our ability to use it, again. The purpose of this proposal is therefore to solve this problem for the world's most powerful magnets. Innovative new radiofrequency technology, coils, method and techniques are proposed for achieving the first head and body images from these unprecedented new fields. This effort is aimed at not only developing advanced technology and techniques required to safely harness the world's most powerful whole body MR magnets for science, but will safely achieve the highest field, highest signal, highest speed images yet.
This application seeks renewal of the grant: 'Human MRI to 9.4T and 'Beyond.' With Human MRI to 9.4T achieved, the effort of this proposal is directed to 'Beyond'. A renewed grant will develop the radiofrequency technology and knowhow required to acquire the first, whole-body images at 10.5T and 11.7T.
Showing the most recent 10 out of 38 publications