Conjugated dienes such as 1,3-butadiene, 2-methyl-1,3-butadiene (isoprene), and styrene are petrochemicals used extensively in many industries including the manufacture of synthetic rubber and plastics. Human and animal exposure to these chemicals has been associated with the development of a wide variety of toxic responses, including cancer and bone marrow, liver, and gonadal toxicities. Because current evidence implicates metabolism of 1,3-butadiene by cytochrome P450s and myeloperoxidase in the mechanisms of 1,3-butadiene toxicity, specific experimental objectives are as follows: A) To determine the relative roles of various P450 isozymes in conjugated diene metabolism in male and female mouse, rat, and human tissue microsomes. B) To investigate the chemical reactivity and acute and subacute toxicity of selected conjugated diene metabolites. This will include characterization of the interactions of selected 1,3-butadiene metabolites with nucleic acids, and histopathological and functional assessment of liver, kidney, testis, and bone marrow after rats and mice are given selected metabolites. C) To develop noninvasive biomonitoring methods to assess 1,3-butadiene exposure. These methods will be based upon both determinations of metabolite concentrations in urine, and analyses of covalent adducts of reactive metabolites with blood hemoglobin. The proposed studies should allow for a better understanding of the mechanisms of conjugated diene toxicity and may facilitate and improve human epidemiologic studies.

National Institute of Health (NIH)
National Institute of Environmental Health Sciences (NIEHS)
Research Project (R01)
Project #
Application #
Study Section
Toxicology Subcommittee 2 (TOX)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Wisconsin Madison
Schools of Veterinary Medicine
United States
Zip Code
Zeng, Fang-Mao; Liu, Ling-Yan; Zheng, Jin et al. (2016) Identification of a Fused-Ring 2'-Deoxyadenosine Adduct Formed in Human Cells Incubated with 1-Chloro-3-buten-2-one, a Potential Reactive Metabolite of 1,3-Butadiene. Chem Res Toxicol 29:1041-50
Liu, Xin-Jie; Zeng, Fang-Mao; An, Jing et al. (2013) Cytotoxicity, genotoxicity, and mutagenicity of 1-chloro-2-hydroxy-3-butene and 1-chloro-3-buten-2-one, two alternative metabolites of 1,3-butadiene. Toxicol Appl Pharmacol 271:13-9
Sun, Liang; Pelah, Avishay; Zhang, Dong-Ping et al. (2013) Formation of fused-ring 2'-deoxycytidine adducts from 1-chloro-3-buten-2-one, an in vitro 1,3-butadiene metabolite, under in vitro physiological conditions. Chem Res Toxicol 26:1545-53
Elfarra, Adnan A; Zhang, Xin-Yu (2012) Alcohol dehydrogenase- and rat liver cytosol-dependent bioactivation of 1-chloro-2-hydroxy-3-butene to 1-chloro-3-buten-2-one, a bifunctional alkylating agent. Chem Res Toxicol 25:2600-7
Barshteyn, Nella; Krause, Renee J; Elfarra, Adnan A (2007) Mass spectral analyses of hemoglobin adducts formed after in vitro exposure of erythrocytes to hydroxymethylvinyl ketone. Chem Biol Interact 166:176-81
Zhang, Xin-Yu; Elfarra, Adnan A (2006) Characterization of 1,2,3,4-diepoxybutane-2'-deoxyguanosine cross-linking products formed at physiological and nonphysiological conditions. Chem Res Toxicol 19:547-55
Zhang, Xin-Yu; Elfarra, Adnan A (2005) Reaction of 1,2,3,4-diepoxybutane with 2'-deoxyguanosine: initial products and their stabilities and decomposition patterns under physiological conditions. Chem Res Toxicol 18:1316-23
Sprague, Christopher L; Elfarra, Adnan A (2005) Protection of rats against 3-butene-1,2-diol-induced hepatotoxicity and hypoglycemia by N-acetyl-l-cysteine. Toxicol Appl Pharmacol 207:266-74
Zhang, Xin-Yu; Elfarra, Adnan A (2004) Characterization of the reaction products of 2'-deoxyguanosine and 1,2,3,4-diepoxybutane after acid hydrolysis: formation of novel guanine and pyrimidine adducts. Chem Res Toxicol 17:521-8
Sprague, Christopher L; Phillips, Lynette A; Young, Karen M et al. (2004) Species and tissue differences in the toxicity of 3-butene-1,2-diol in male Sprague-Dawley rats and B6C3F1 mice. Toxicol Sci 80:3-13

Showing the most recent 10 out of 29 publications