The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that mediates the toxic effects, including carcinogenicity and teratogenicity, of a large class of environmental pollutants known as 'dioxinlike'compounds, named after the most potent congener 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Studies in Ahr null allele mice show that the AHR is necessary for most of the toxic effects of TCDD. However, the mechanism(s) of toxicity downstream of AHR activation remain(s) elusive. As dioxin toxicity does not require concordant exposure to xenobiotics, and dioxin is not metabolized to a reactive intermediate, additional physiologic processes must be disrupted by exposure to TCDD. In humans exposed to dioxin, the most often observed and best studied toxic response is chloracne. Chloracne is manifested in the skin as hyperkeratinization of the interfollicular squamous epithelium, hyperproliferation and hyperkeratinization of cells of the hair follicle, as well as a metaplastic response of the ductular sebaceous glands. How AHR-mediated changes in gene expression lead to toxicity is not well understood for any organ system including skin. Recently, dioxin via the AHR, was shown to enhance human keratinocyte differentiation and to elevate the expression of three genes involved in cornification, a late part of the differentiation process. Formation of the outermost layer of the skin, the stratum corneum, is essential to epidermal barrier function and provides protection against the outside environment and loss of water from the body. Of importance, epidermal growth factor (EGF) receptor (EGFR) signaling was shown to block both TCDD-AHR-mediated gene expression and cell differentiation. These results may in part explain how dioxin affects epidermal homeostasis and identify one mechanism by which EGFR signaling can repress AHR-mediated transcription in keratinocytes. We propose to test the hypothesis that in the epidermis, TCDD-activated AHR disrupts the epidermal barrier by increasing the transcription of genes involved in the formation and function of the stratum corneum, and that EGFR signaling acts to repress this effect. In this proposal, Aim 1 determines whether the TCDD-activated AHR transcriptionally regulates a prioritized set of epidermal target genes and whether these genes are regulated by the AHR and EGFR pathways by mechanisms similar to what has been described for CYP1A1, the prototypic AHR-regulated gene.
Aim 2 elucidates the mechanism(s) by which EGFR signaling represses AHR ligand-dependent activation.
Aim 3 extends our results in vivo, to determine whether TCDD affects the timing of formation and the function of the epidermal barrier. Collectively, these proposed studies will greatly enhance our understanding of the effects of TCDD on the skin, and will generate the knowledge that is necessary to design minimally invasive studies using small skin biopsies and tape stripping methods in translational studies of human populations exposed to dioxin.
Our proposed studies address a major challenge to understand the causal relationships between activation of the AHR by TCDD, changes in gene expression, and the effects of TCDD on the epidermis. By elaborating the mechanisms of dioxin toxicity and the repression of the AHR by EGFR signaling these proposed studies will greatly improve our knowledge of the effects of dioxin on the skin as well as the risk characterization and public health policy decisions on dioxin exposure. The results of these studies will generate the knowledge that is necessary to design minimally invasive studies using small skin biopsies and tape stripping methods in future translational studies of human populations exposed to dioxin.