Diabetic retinopathy (DR) is a primary cause of blindness of working age adults in the Western world. Early pericyte dropout and endothelial cell death result in the formation of acellular capillaries, which cause retinal hypoxia and ischemia and are important contributors to DR development. We have shown have that hematopoietic stem and endothelial precursor cells (EPC) readily home to the retina in healthy animals, but that EPC of diabetic animal and humans have a migratory defect. Our preliminary studies demonstrate that EPC dysfunction may provide a novel mechanism for development of acellular capillaries in diabetic retinopathy. Our data suggest that within EPCs, nitric oxide (NO) plays a key role in regulating the actin polymerization mediator, vasodilator-stimulated phosphoprotein (VASP). In diabetes, reduced bioavailability of NO can occur as a result of alterations in growth factor/cytokine receptor balance, downstream signaling, or downregulation of NO synthase (NOS) activation. Reduced NO can alter actin polymerization affecting EPC migration and their ability to carry out endothelial repair. Our hypothesis is that in diabetic individuals reduced NO bioavailability results in decreased EPC migration, attachment and invasion contributing to inadequate endothelial repair and development of acellular capillaries. State-of-the- art imaging, fluorescent activated cell sorter analysis, novel in vitro culture assays and diabetic animal models will be used in combination with biochemical and molecular biological techniques to test our hypothesis. We propose the following specific aims:
Specific Aim 1 : Our hypothesis predicts that diabetic EPCs will be unable to home to the retina and repopulate acellular capillaries whereas EPCs from normals will. Diabetic mice that have developed acellular retinal capillaries will be injected systemically with EPCs from nondiabetic rodents and the degree of vascular repair examined.
Specific Aim 2 : Our hypothesis predicts that NO regulates EPC migration .directly by promoting cytoskeletal changes. We will determine which factors regulate EPC NOS isoform expression and NO generation and delineate the NO signaling pathway that regulates cytoskeletal dysfunction in diabetic EPCs.
Specific Aim 3 : Our hypothesis predicts that diabetic CD34+ EPC cells have defective attachment and invasion. We will determine whether EPC attachment is dependent upon inherent properties of the EPC or the local matrix environment and evaluate human diabetic and nondiabetic CD34+ cell attachment to normal and glycated matrix. The exciting implication of our hypothesis is that early repair of the EPC migratory defect may deter the subsequent development of proliferative diabetic retinopathy. ? ? ?

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Research Project (R01)
Project #
2R01EY012601-08A1
Application #
7150513
Study Section
Special Emphasis Panel (ZRG1-CB-G (90))
Program Officer
Shen, Grace L
Project Start
1998-09-30
Project End
2010-06-30
Budget Start
2006-07-01
Budget End
2007-06-30
Support Year
8
Fiscal Year
2006
Total Cost
$418,491
Indirect Cost
Name
University of Florida
Department
Pharmacology
Type
Schools of Medicine
DUNS #
969663814
City
Gainesville
State
FL
Country
United States
Zip Code
32611
Shaw, Lynn Calvin; Li Calzi, Sergio; Li, Nan et al. (2018) Enteral Arg-Gln Dipeptide Administration Increases Retinal Docosahexaenoic Acid and Neuroprotectin D1 in a Murine Model of Retinopathy of Prematurity. Invest Ophthalmol Vis Sci 59:858-869
Beli, Eleni; Yan, Yuanqing; Moldovan, Leni et al. (2018) Restructuring of the Gut Microbiome by Intermittent Fasting Prevents Retinopathy and Prolongs Survival in db/db Mice. Diabetes 67:1867-1879
Lakshmikanthan, Sribalaji; Sobczak, Magdalena; Li Calzi, Sergio et al. (2018) Rap1B promotes VEGF-induced endothelial permeability and is required for dynamic regulation of the endothelial barrier. J Cell Sci 131:
Bhatwadekar, Ashay D; Duan, Yaqian; Korah, Maria et al. (2017) Hematopoietic stem/progenitor involvement in retinal microvascular repair during diabetes: Implications for bone marrow rejuvenation. Vision Res 139:211-220
Basavarajappa, Halesha D; Sulaiman, Rania S; Qi, Xiaoping et al. (2017) Ferrochelatase is a therapeutic target for ocular neovascularization. EMBO Mol Med 9:786-801
Salazar, Tatiana E; Richardson, Matthew R; Beli, Eleni et al. (2017) Electroacupuncture Promotes Central Nervous System-Dependent Release of Mesenchymal Stem Cells. Stem Cells 35:1303-1315
Hu, Ping; Hunt, Nicholas H; Arfuso, Frank et al. (2017) Increased Indoleamine 2,3-Dioxygenase and Quinolinic Acid Expression in Microglia and Müller Cells of Diabetic Human and Rodent Retina. Invest Ophthalmol Vis Sci 58:5043-5055
Hammer, Sandra S; Beli, Eleni; Kady, Nermin et al. (2017) The Mechanism of Diabetic Retinopathy Pathogenesis Unifying Key Lipid Regulators, Sirtuin 1 and Liver X Receptor. EBioMedicine 22:181-190
Lee, Sangmi; Elaskandrany, Menna; Lau, Lester F et al. (2017) Interplay between CCN1 and Wnt5a in endothelial cells and pericytes determines the angiogenic outcome in a model of ischemic retinopathy. Sci Rep 7:1405
Li, Wennan; Chen, Xingjuan; Riley, Ashley M et al. (2017) Long-term spironolactone treatment reduces coronary TRPC expression, vasoconstriction, and atherosclerosis in metabolic syndrome pigs. Basic Res Cardiol 112:54

Showing the most recent 10 out of 122 publications