Early postnatal experience can profoundly influence the structure and function of the mammalian neocortex. The cellular and molecular mechanisms underlying the critical period plasticity in visual cortex will provide insight into the development of other sensory and cognitive functions, learning and memory, rehabilitation, and regeneration. It has been suggested that the development of GABAergic inhibitory mechanisms may initiate and drive the critical period for ocular dominance (OD) plasticity in visual cortex. GABAergic interneurons are morphologically and physiologically diverse and control cortical excitability at precise spatial and temporal domains. We hypothesize that the functional maturation of distinct classes of GABAergic circuits allows enhanced GABAergic synaptic transmission during the critical period and contributes to OD plasticity. We will use cell type-specific promoters and bacterial artificial chromosome transgenics in mice to label specific classes of GABAergic interneurons in living tissue. We will then characterize the functional maturation of such GFP labeled interneurons in cortical slices using electrophysiology and two-photon imaging. Furthermore, we will alter the expression of the GABA synthetic enzyme GAD65 in two classes of GABAergic circuits: the parvalbumin- containing basket interneurons and the somatostatin- containing bitufted interneurons. We will then examine the consequences of such cell type-specific manipulation of GABAergic transmission on the critical period of OD plasticity using single unit recording in visual cortex. Maturation of cortical GABAergic circuitry is in turn strongly influenced by visual experience. We hypothesize that the brain-derived neurotrophic factor (BDNF) is a key molecular signal that promotes the normal maturation of GABAergic interneurons and retards their development during visual deprivation. We will examine whether BDNF overexpression in visual cortex in transgenic mice can rescue the effects of dark rearing on the maturation of GABAergic circuits and on visual function using immunohistochemistry and electrophysiology. A genetic approach to the function and development of specific classes of GABAergic circuits will contribute to our understanding of the microarchitecture and information processing in normal neocortex and its deregulated states such as epilepsy.

National Institute of Health (NIH)
National Eye Institute (NEI)
Research Project (R01)
Project #
Application #
Study Section
Visual Sciences B Study Section (VISB)
Program Officer
Oberdorfer, Michael
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Cold Spring Harbor Laboratory
Cold Spring Harbor
United States
Zip Code
Chattopadhyaya, Bidisha; Di Cristo, Graziella; Wu, Cai Zhi et al. (2007) GAD67-mediated GABA synthesis and signaling regulate inhibitory synaptic innervation in the visual cortex. Neuron 54:889-903
Di Cristo, Graziella; Chattopadhyaya, Bidisha; Kuhlman, Sandra J et al. (2007) Activity-dependent PSA expression regulates inhibitory maturation and onset of critical period plasticity. Nat Neurosci 10:1569-77
Pillai-Nair, Neeta; Panicker, Anitha K; Rodriguiz, Ramona M et al. (2005) Neural cell adhesion molecule-secreting transgenic mice display abnormalities in GABAergic interneurons and alterations in behavior. J Neurosci 25:4659-71
Chattopadhyaya, Bidisha; Di Cristo, Graziella; Higashiyama, Hiroyuki et al. (2004) Experience and activity-dependent maturation of perisomatic GABAergic innervation in primary visual cortex during a postnatal critical period. J Neurosci 24:9598-611
Di Cristo, Graziella; Wu, Caizhi; Chattopadhyaya, Bidisha et al. (2004) Subcellular domain-restricted GABAergic innervation in primary visual cortex in the absence of sensory and thalamic inputs. Nat Neurosci 7:1184-6