The brain is an intricate set of neural circuits that communicate and interact. These circuits are organized at the local spatial scale (microns) of synapses that connect nearby neurons and at the much larger spatial scale (centimeters) of axon bundles that connect widely separated regions of cortex. MRI is a noninvasive measurement method that is the only technique available for measuring axon bundle circuits and tissue properties at the micron scale in the living human brain. The grant proposes new methods to identify circuits in adult brains and then to measure the normal development of tissue properties in key axon bundles. Understanding the circuit characteristics and their healthy development is essential for the goals of monitoring healthy visual development, detecting disease, evaluating the efficacy of therapies, and understanding neural signals needed for proper visual perception.

Public Health Relevance

The visual system comprises an intricate set of neural circuits that are organized at the micron scale of local groups of neurons and as well as the centimeter scale of axon bundles that connect neurons in different parts of cortex. This grant proposes new measurements and algorithms to identify axon bundles and measure tissue properties of these bundles in the visual parts of the brain. Identifying these circuits in adult brains and measuring their normal development in children will allow us to understand the circuit characteristics that are important for healthy visual development and normal visual perception, for detecting and monitoring disease (e.g. optic neuritis or multiple sclerosis) progression, and for evaluating the efficacy of therapies.

National Institute of Health (NIH)
National Eye Institute (NEI)
Research Project (R01)
Project #
Application #
Study Section
Special Emphasis Panel (SPC)
Program Officer
Steinmetz, Michael A
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Stanford University
Schools of Arts and Sciences
United States
Zip Code
Berman, Shai; West, Kathryn L; Does, Mark D et al. (2018) Evaluating g-ratio weighted changes in the corpus callosum as a function of age and sex. Neuroimage 182:304-313
Leong, Josiah K; Pestilli, Franco; Wu, Charlene C et al. (2016) White-Matter Tract Connecting Anterior Insula to Nucleus Accumbens Correlates with Reduced Preference for Positively Skewed Gambles. Neuron 89:63-9
Wandell, Brian A; Winawer, Jonathan (2015) Computational neuroimaging and population receptive fields. Trends Cogn Sci 19:349-57
Allen, Brian; Spiegel, Daniel P; Thompson, Benjamin et al. (2015) Altered white matter in early visual pathways of humans with amblyopia. Vision Res 114:48-55
Rokem, Ariel; Yeatman, Jason D; Pestilli, Franco et al. (2015) Evaluating the accuracy of diffusion MRI models in white matter. PLoS One 10:e0123272
Ajina, Sara; Pestilli, Franco; Rokem, Ariel et al. (2015) Human blindsight is mediated by an intact geniculo-extrastriate pathway. Elife 4:
Gomez, Jesse; Pestilli, Franco; Witthoft, Nathan et al. (2015) Functionally defined white matter reveals segregated pathways in human ventral temporal cortex associated with category-specific processing. Neuron 85:216-227
Yeatman, Jason D; Wandell, Brian A; Mezer, Aviv A (2014) Lifespan maturation and degeneration of human brain white matter. Nat Commun 5:4932
Ogawa, Shumpei; Takemura, Hiromasa; Horiguchi, Hiroshi et al. (2014) White matter consequences of retinal receptor and ganglion cell damage. Invest Ophthalmol Vis Sci 55:6976-86
Main, Keith L; Pestilli, Franco; Mezer, Aviv et al. (2014) Speed discrimination predicts word but not pseudo-word reading rate in adults and children. Brain Lang 138:27-37

Showing the most recent 10 out of 43 publications