The ability to regulate the mRNA population is a key element of normal cell function, required for cell cycle regulation, cell differentiation and cell determination. Minor mRNA changes can have a major impact on cell function, possibly best represented by the effects of altered oncogene expression or hormone induction. Clearly, promoter activation effected by both initiation and repression functions is a dominant player in mRNA metabolism, but it is not the only level at which mRNA populations can be controlled. A growing number of transcription units are also under the influence of """"""""postinitiation"""""""" control functions which include premature termination (c-myc, c-myb, Ad-mlp), alternative splicing and alternative polyadenylation (Ad-mlp, calcitonin/CGRP, muscle proteins) and transcription termination (Ig mu-delta, Ad-mlp. In addition to these nuclear events, in the cytoplasm cell specific control of mRNA 1/2 life is also becoming more and more apparent. The """"""""postinitiation"""""""" regulation of a cells mRNA population is the general area of research my group is addressing. This proposal deals specifically with experiments designed to understand the mechanisms which operate to regulate two of these events, poly(A) choice in complex transcription units and termination of RNA polymerase II transcription units. One important aspect of postinitiation functions which is presently open to debate is whether the regulation of these events is mediated directly through the RNA polymerase II elongation complex or are these events (particularly splicing and polyadenylation) controlled at a point which is uncoupled from the transcription complex. This issue is also important to the control of transcription termination, since we have demonstrated the DNA sequence AATAAA (polyadenylation signal sequence) is a required cis element of 3' termination. This proposal is directly answering this synthesis (using reconstructed adenovirus vectors) and in vitro dissection of the biochemical process involved in controlling the 3' postinitiation events. Basic information which will be generated by these studies will include comparison of in vivo and in vitro poly (A) site utilization for several polyadenylation signal elements, relate the efficiency of poly (A) site utilization to transcription termination, identify the 3' consensus sequence required to inducer transcription complex displacement and finally, demonstrate how for the adenovirus major late transcription unit, the generation of varied preinitiation complexes at the mlp can influence elongation and processing events at the 3' end.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM041967-05
Application #
2181160
Study Section
Molecular Biology Study Section (MBY)
Project Start
1990-01-01
Project End
1994-12-31
Budget Start
1994-01-01
Budget End
1994-12-31
Support Year
5
Fiscal Year
1994
Total Cost
Indirect Cost
Name
Weill Medical College of Cornell University
Department
Microbiology/Immun/Virology
Type
Schools of Medicine
DUNS #
201373169
City
New York
State
NY
Country
United States
Zip Code
10065
Prescott, J C; Liu, L; Falck-Pedersen, E (1997) Sequence-mediated regulation of adenovirus gene expression by repression of mRNA accumulation. Mol Cell Biol 17:2207-16
Gershengorn, M C; Heinflink, M; Nussenzveig, D R et al. (1994) Thyrotropin-releasing hormone (TRH) receptor number determines the size of the TRH-responsive phosphoinositide pool. Demonstration using controlled expression of TRH receptors by adenovirus mediated gene transfer. J Biol Chem 269:6779-83
Kass-Eisler, A; Falck-Pedersen, E; Elfenbein, D H et al. (1994) The impact of developmental stage, route of administration and the immune system on adenovirus-mediated gene transfer. Gene Ther 1:395-402
Falck-Pedersen, E; Heinflink, M; Alvira, M et al. (1994) Expression of thyrotropin-releasing hormone receptors by adenovirus-mediated gene transfer reveals that thyrotropin-releasing hormone desensitization is cell specific. Mol Pharmacol 45:684-9
Kass-Eisler, A; Falck-Pedersen, E; Alvira, M et al. (1993) Quantitative determination of adenovirus-mediated gene delivery to rat cardiac myocytes in vitro and in vivo. Proc Natl Acad Sci U S A 90:11498-502
Tantravahi, J; Alvira, M; Falck-Pedersen, E (1993) Characterization of the mouse beta maj globin transcription termination region: a spacing sequence is required between the poly(A) signal sequence and multiple downstream termination elements. Mol Cell Biol 13:578-87
Edwalds-Gilbert, G; Prescott, J; Falck-Pedersen, E (1993) 3' RNA processing efficiency plays a primary role in generating termination-competent RNA polymerase II elongation complexes. Mol Cell Biol 13:3472-80
Prescott, J C; Falck-Pedersen, E (1992) Varied poly(A) site efficiency in the adenovirus major late transcription unit. J Biol Chem 267:8175-81
DeZazzo, J D; Falck-Pedersen, E; Imperiale, M J (1991) Sequences regulating temporal poly(A) site switching in the adenovirus major late transcription unit. Mol Cell Biol 11:5977-84