Antibiotic Biosynthesis: Amino Acid Morphing Most clinically used antibiotics are natural products from microbial sources and are built of peptide or polyketide frameworks or hybrids thereof. In the biogenesis of peptide antibiotics of both ribosomal and nonribosomal origin one of Nature's strategies is to morph the amino acid side chains and also the peptide backbones into scaffolds that are conformationally restricted by cyclization to populate biologically active conformers. A complemetary strategy is to generate functional groups within restricted architectures that lead to potent inhibiton of specific targets. In this application we propose examination of both aspects to decipher enzymatic strategies for side chain and backbone cyclizatuons during peptide antibiotic scaffold maturation as well as generation of unusual functional groups that underlie antibiotic structure and function.
In specific aim 1 we propose to decipher the enzymatic strategies for making stable N-P bonds in the ribosomal petide antibiotic Microcin C7 and the nonribosomal peptide phaseolotoxin.
In specific aim 2 we will examine the enzymatic machinery for construction of """"""""syrbactin"""""""" antibiotics with 12 membered enamide macrolactam rings as conditional electrophiles that irreversibly target the proteasome.
In specific aim 3 we examine antibiotic and pheromone synthases that convert the indole side chain of tryptophan to a rigidified tricyclic system as well as looking at the construction of an eight member macrocycle involving the indole ring. We also examine the enzymes that mediate conversion of Phe and Tyr side chains into rigidified bicyclic and tricyclic frameworks in toxin and antibiotic generation.

Public Health Relevance

Narrative: Antibiotic Biosynthesis: Amino Acid Morphing There is a constant need for new antibiotics as multiply drug resistant bacterial pathogens emerge. Most antibiotics are built on natural product scaffolds. This application examines sets of enzymes that build in conformational constraints and unusual side chains into natural peptide-based frameworks during antibiotic construction. These biosynthetic enzymes involve morphing of the amino acid building blocks, both in side chains and in peptide bond connectivity, to create the rigidified scaffolds with conditionally reactive functional groups that lead to biologically active conformers of antibiotics.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM049338-20
Application #
8231526
Study Section
Synthetic and Biological Chemistry B Study Section (SBCB)
Program Officer
Gerratana, Barbara
Project Start
1993-04-01
Project End
2014-03-31
Budget Start
2012-04-01
Budget End
2014-03-31
Support Year
20
Fiscal Year
2012
Total Cost
$519,447
Indirect Cost
$211,146
Name
Harvard University
Department
Biochemistry
Type
Schools of Medicine
DUNS #
047006379
City
Boston
State
MA
Country
United States
Zip Code
02115
Khosla, Chaitan; Herschlag, Daniel; Cane, David E et al. (2014) Assembly line polyketide synthases: mechanistic insights and unsolved problems. Biochemistry 53:2875-83
Walsh, Christopher T; Haynes, Stuart W; Ames, Brian D et al. (2013) Short pathways to complexity generation: fungal peptidyl alkaloid multicyclic scaffolds from anthranilate building blocks. ACS Chem Biol 8:1366-82
Haynes, Stuart W; Gao, Xue; Tang, Yi et al. (2013) Complexity generation in fungal peptidyl alkaloid biosynthesis: a two-enzyme pathway to the hexacyclic MDR export pump inhibitor ardeemin. ACS Chem Biol 8:741-8
Gao, Xue; Jiang, Wei; Jiménez-Osés, Gonzalo et al. (2013) An iterative, bimodular nonribosomal peptide synthetase that converts anthranilate and tryptophan into tetracyclic asperlicins. Chem Biol 20:870-8
Jiang, Wei; Cacho, Ralph A; Chiou, Grace et al. (2013) EcdGHK are three tailoring iron oxygenases for amino acid building blocks of the echinocandin scaffold. J Am Chem Soc 135:4457-66
Walsh, Christopher T; O'Brien, Robert V; Khosla, Chaitan (2013) Nonproteinogenic amino acid building blocks for nonribosomal peptide and hybrid polyketide scaffolds. Angew Chem Int Ed Engl 52:7098-124
Walsh, Christopher T; Wencewicz, Timothy A (2013) Flavoenzymes: versatile catalysts in biosynthetic pathways. Nat Prod Rep 30:175-200
Young, Travis S; Dorrestein, Pieter C; Walsh, Christopher T (2012) Codon randomization for rapid exploration of chemical space in thiopeptide antibiotic variants. Chem Biol 19:1600-10
Parker, Jared B; Walsh, Christopher T (2012) Stereochemical outcome at four stereogenic centers during conversion of prephenate to tetrahydrotyrosine by BacABGF in the bacilysin pathway. Biochemistry 51:5622-32
Cacho, Ralph A; Jiang, Wei; Chooi, Yit-Heng et al. (2012) Identification and characterization of the echinocandin B biosynthetic gene cluster from Emericella rugulosa NRRL 11440. J Am Chem Soc 134:16781-90

Showing the most recent 10 out of 43 publications