Polyketide synthases (PKSs) are a family of multi-enzyme assemblies that catalyze the synthesis of numerous structurally complex and biologically important natural products. Modular PKSs, such as the 6-deoxyerythronolide B synthase (DEBS), are a particularly interesting sub-class of PKSs that synthesize complex polyketides such as macrolides. Over the past decade, there has been considerable interest in studying these megasynthases, and in exploiting their modularity and broad substrate specificity for the engineered biosynthesis of """"""""unnatural"""""""" natural products. Most products of modular PKSs are produced by relatively uncharacterized bacteria. As a result, every time a new natural product with promising biological properties is discovered, a considerable amount of time and expense must be incurred to obtain reliable quantities of the compound from natural sources, and an even greater investment is demanded before the biosynthetic pathway becomes amenable to rational engineering. An alternative is to develop robust and generally applicable technologies for the heterologous expression of polyketides in well-characterized microbial hosts. During the past proposal period, the metabolism of the model bacterium Escherichia coli was engineered to produce 6-deoxyerythronolide B (6dEB), the macrocyclic core of the antibiotic erythromycin. This engineered strain of E. coli harbors modifications in five endogenous genes; it also contains seven new genes from three different heterologous sources. The resulting cellular catalyst converts exogenous propionate into 6dEB in quantities approaching 200 mg/L over a 5-day process. During the next 3-year proposal period, we will focus on improving and extending the properties of E. coli as a host of choice for the biosynthesis of natural and unnatural polyketides. This will be accomplished through a combination of molecular biological tools, metabolic engineering strategies and fermentation technology development.
The Specific Aims are: I] Engineering new pathways for precursor and product biosynthesis in E. coli; II] Improved fermentation protocols for enhancing polyketide productivity in E. coli; III] Further improvements in polyketide productivity of E. coli using functional genornic and metabolic engineering approaches; & IV] Heterologous production of two new complex natural products in E. coli. The implications of this research are 3-fold. First, given the availability of scalable protocols for fermenting E. coli to overproduce bioproducts, the ability to synthesize complex polyketides in this heterologous host will bode well for the practical production of these expensive bioactive natural products as well as their engineered derivatives. Second, the use of E. coli as a host for polyketide production opens the door for harnessing E. coli to engineer modular PKSs using directed and random approaches. Finally, the project is a good opportunity to train students at the interface of metabolic engineering & natural product biosynthesis.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Research Project (R01)
Project #
Application #
Study Section
Special Emphasis Panel (ZGM1-MBP-1 (ME))
Program Officer
Jones, Warren
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Stanford University
Engineering (All Types)
Schools of Engineering
United States
Zip Code
Hartung, Ingo V; Rude, Mathew A; Schnarr, Nathan A et al. (2005) Stereochemical assignment of intermediates in the rifamycin biosynthetic pathway by precursor-directed biosynthesis. J Am Chem Soc 127:11202-3
Lee, Taek Soon; Khosla, Chaitan; Tang, Yi (2005) Engineered biosynthesis of aklanonic acid analogues. J Am Chem Soc 127:12254-62
Lee, Ho Young; Chung, Hak Suk; Hang, Chao et al. (2004) Reconstitution and characterization of a new desosaminyl transferase, EryCIII, from the erythromycin biosynthetic pathway. J Am Chem Soc 126:9924-5
Kinoshita, Kenji; Pfeifer, Blaine A; Khosla, Chaitan et al. (2003) Precursor-Directed polyketide biosynthesis in Escherichia coli. Bioorg Med Chem Lett 13:3701-4
Pfeifer, Blaine A; Wang, Clay C C; Walsh, Christopher T et al. (2003) Biosynthesis of Yersiniabactin, a complex polyketide-nonribosomal peptide, using Escherichia coli as a heterologous host. Appl Environ Microbiol 69:6698-702
Hu, Zhihao; Pfeifer, Blaine A; Chao, Elizabeth et al. (2003) A specific role of the Saccharopolyspora erythraea thioesterase II gene in the function of modular polyketide synthases. Microbiology 149:2213-25
Watanabe, Kenji; Khosla, Chaitan; Stroud, Robert M et al. (2003) Crystal structure of an Acyl-ACP dehydrogenase from the FK520 polyketide biosynthetic pathway: insights into extender unit biosynthesis. J Mol Biol 334:435-44