Probiotics are live organisms that confer a benefit to their host in some fashion. Bacteroides fragilis is one such probiotic by virtue of the immunomodulatory properties of its capsular polysaccharide PSA, the founding member of a novel class of MHC class II-presented carbohydrate T cell antigens (glycoantigens). Oral exposure to PSA in gnotobiotic mice restores the Th1/Th2 balance and immune homeostasis while rendering these animals less susceptible to inflammatory diseases through the induction of regulatory T cells. Our published and preliminary data further demonstrate that the nature of the N-linked glycans decorating antigen presenting cells, and specifically MHCII, is a critical aspect of the mechanism by which glycoantigens are presented and recognized by T cells. These innovative and unexpected findings suggest that immune homeostasis could be regulated by cellular glycosylation by virtue of the impact host glycans have on the induction of commensal-specific Treg cells. Here, we propose three specific aims to obtain a complete mechanistic and structural understanding of how host glycosylation modulates glycoantigen presentation, peripheral inflammation, and ultimately immune homeostasis at the molecular, cellular, and organismal levels. The results from our proposed experiments will reveal regulatory connections between inflammation and glycosylation through carbohydrate antigen activity and could lead to drug target identification to prevent and/or treat ongoing inflammation in diseases as diverse as asthma, IBD, atherosclerosis, and cancer.

Public Health Relevance

Our findings during the previous funding period show there is interplay between protein glycosylation, protective anti-inflammatory immune responses, and the prevention of inflammatory diseases by commensal bacteria-derived polysaccharide antigens. This proposal seeks to provide an in depth analysis of the mechanism underlying this interplay in order to understand and manipulate these relationships to improve the outcome for patients with diseases where underlying inflammation is a causative force for disease progression and pathology.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
3R01GM082916-05S1
Application #
9026377
Study Section
Program Officer
Marino, Pamela
Project Start
2009-08-01
Project End
2016-12-31
Budget Start
2015-01-01
Budget End
2015-12-31
Support Year
5
Fiscal Year
2015
Total Cost
$107,500
Indirect Cost
Name
Case Western Reserve University
Department
Pathology
Type
Schools of Medicine
DUNS #
077758407
City
Cleveland
State
OH
Country
United States
Zip Code
44106
Zhou, Julie Y; Oswald, Douglas M; Oliva, Kelsey D et al. (2018) The Glycoscience of Immunity. Trends Immunol 39:523-535
Oliva, Kelsey D; Cavanaugh, Jill M; Cobb, Brian A (2018) Antibody receptors steal the sweet spotlight. J Biol Chem 293:3490-3491
Hiyoshi, Hirotaka; Wangdi, Tamding; Lock, Gabriel et al. (2018) Mechanisms to Evade the Phagocyte Respiratory Burst Arose by Convergent Evolution in Typhoidal Salmonella Serovars. Cell Rep 22:1787-1797
Johnson, Jenny L; Jones, Mark B; Cobb, Brian A (2018) Polysaccharide-experienced effector T cells induce IL-10 in FoxP3+ regulatory T cells to prevent pulmonary inflammation. Glycobiology 28:50-58
Jun, Janice C; Jones, Mark B; Oswald, Douglas M et al. (2017) T cell-intrinsic TLR2 stimulation promotes IL-10 expression and suppressive activity by CD45RbHi T cells. PLoS One 12:e0180688
Jones, Mark B; Ryan, Sean O; Johnson, Jenny L et al. (2016) Dendritic cell-specific Mgat2 knockout mice show antigen presentation defects but reveal an unexpected CD11c expression pattern. Glycobiology 26:1007-1013
Jones, Mark B; Oswald, Douglas M; Joshi, Smita et al. (2016) B-cell-independent sialylation of IgG. Proc Natl Acad Sci U S A 113:7207-12
Johnson, Jenny L; Jones, Mark B; Cobb, Brian A (2015) Polysaccharide A from the capsule of Bacteroides fragilis induces clonal CD4+ T cell expansion. J Biol Chem 290:5007-14
Johnson, Jenny L; Jones, Mark B; Cobb, Brian A (2015) Bacterial capsular polysaccharide prevents the onset of asthma through T-cell activation. Glycobiology 25:368-75
Taylor, Patricia R; Roy, Sanhita; Leal Jr, Sixto M et al. (2014) Activation of neutrophils by autocrine IL-17A-IL-17RC interactions during fungal infection is regulated by IL-6, IL-23, ROR?t and dectin-2. Nat Immunol 15:143-51

Showing the most recent 10 out of 25 publications