The broad goal is to develop and apply computational methods for building data-derived models of the structure and dynamics of proteins and their assemblies. These models can give insights into how the assemblies work, how they evolved, how they can be controlled, and how similar functionality can be designed. One successful approach, integrative structure modeling, casts the building of such models as a computational optimization problem where all knowledge about the assembly is encoded into the scoring function used to evaluate candidate models. It is proposed here to extend and enhance the open source Integrative Modeling Platform (IMP;http://integrativemodeling.org/) that provides programmatic support for developing and distributing integrative structure modeling protocols. IMP allows representation of molecules at a variety of resolutions, use of scoring functions based on many types of data, and searches for solutions by a variety of sampling algorithms. In addition, IMP is easily extensible to add support for new data sources and algorithms, and is distributed under an open source license, with more than 300 unique downloads since March 2010. So far, it has been applied mostly to data from electron microscopy, small angle X-ray scattering, and various proteomics methods. The package will be extended to allow addressing a greater range of biological problems and to make it more generally useful to the scientific community. Specifically, the traditional scoring functions used by IMP will be supplemented with inference-based scoring functions that extract the maximum possible information from the data. The formulation of these functions will follow a Bayesian approach with minimal assumptions and approximations, to account for errors and incompleteness in the data as well as a heterogeneous sample. Sampling of the scoring function landscape will be improved by a method that efficiently divides the complete set of degrees of freedom into potentially overlapping subsets, finds optimal and suboptimal solutions for the subsets independently by traditional optimizers or enumeration, and then combines compatible solutions to obtain guaranteed best-scoring solutions for the whole system. IMP will also be extended to make best use of the wealth of information provided by mass spectrometry. To maximize the impact of IMP and its utility to the community, it will be interfaced with other packages, including structure viewers such as Chimera, structure prediction and design programs such as Rosetta, and web portals such as the Protein Model Portal. Finally, the software will be well-tested and documented, and the growing IMP community will be supported with mailing lists, examples, demonstrations at workshops, and hosting of select users at UCSF.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM083960-07
Application #
8643251
Study Section
Biodata Management and Analysis Study Section (BDMA)
Program Officer
Lyster, Peter
Project Start
2008-04-01
Project End
2016-03-31
Budget Start
2014-04-01
Budget End
2015-03-31
Support Year
7
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of California San Francisco
Department
Pharmacology
Type
Schools of Pharmacy
DUNS #
City
San Francisco
State
CA
Country
United States
Zip Code
94143
Jishage, Miki; Yu, Xiaodi; Shi, Yi et al. (2018) Architecture of Pol II(G) and molecular mechanism of transcription regulation by Gdown1. Nat Struct Mol Biol 25:859-867
Kim, Seung Joong; Fernandez-Martinez, Javier; Nudelman, Ilona et al. (2018) Integrative structure and functional anatomy of a nuclear pore complex. Nature 555:475-482
Vallat, Brinda; Webb, Benjamin; Westbrook, John D et al. (2018) Development of a Prototype System for Archiving Integrative/Hybrid Structure Models of Biological Macromolecules. Structure 26:894-904.e2
Webb, Benjamin; Viswanath, Shruthi; Bonomi, Massimiliano et al. (2018) Integrative structure modeling with the Integrative Modeling Platform. Protein Sci 27:245-258
Singla, Jitin; McClary, Kyle M; White, Kate L et al. (2018) Opportunities and Challenges in Building a Spatiotemporal Multi-scale Model of the Human Pancreatic ? Cell. Cell 173:11-19
Yoshizawa, Takuya; Ali, Rustam; Jiou, Jenny et al. (2018) Nuclear Import Receptor Inhibits Phase Separation of FUS through Binding to Multiple Sites. Cell 173:693-705.e22
Schneidman-Duhovny, Dina; Khuri, Natalia; Dong, Guang Qiang et al. (2018) Predicting CD4 T-cell epitopes based on antigen cleavage, MHCII presentation, and TCR recognition. PLoS One 13:e0206654
Guy, Andrew J; Irani, Vashti; Beeson, James G et al. (2018) Proteome-wide mapping of immune features onto Plasmodium protein three-dimensional structures. Sci Rep 8:4355
Chen, Qi; Vieth, Michal; Timm, David E et al. (2017) Reconstruction of 3D structures of MET antibodies from electron microscopy 2D class averages. PLoS One 12:e0175758
Viswanath, Shruthi; Chemmama, Ilan E; Cimermancic, Peter et al. (2017) Assessing Exhaustiveness of Stochastic Sampling for Integrative Modeling of Macromolecular Structures. Biophys J 113:2344-2353

Showing the most recent 10 out of 75 publications