Alternative splicing is a key process in the control of mammalian gene expression and a major source of protein diversity. Errors in splicing regulation are implicated in many disease processes, including cancer and inherited disorders of the neuromuscular systems. However, the cellular circuits that control splicing regulation are mostly unknown. New methods that measure splicing changes on a genome-wide scale make possible the discovery of coordinately regulated networks of alternative splicing. The elucidation of the regulatory events underlying this coordinate control will be essential for understanding how groups of exons are controlled during development and disease. This project will support the continued development and dispersal of parallel technologies for measuring alternative splicing initiated by the Black, Fu and Ares labs through prior R24 funding. In the initial project period, several different approaches were developed. Most notably, two splicing- sensitive microarrays, one for mouse and one for human cells, each measuring splicing of about 1300 alternative splicing events in about 1000 genes, were successfully designed, printed and used to capture and analyze data. These arrays were applied to a diverse set of experiments and were successful in uncovering several systems of coordinate splicing control important in cellular differentiation and homeostasis. We propose to continue this productive collaboration with the following aims: (1) We will continue to apply the arrays and analysis methods produced during the previous funding period to questions of splicing regulation, and we will expand their use to additional laboratories studying splicing;(2) we will improve the design and analysis of splicing-sensitive arrays to make them more comprehensive, and reliable, as well as more widely available;and (3) we will develop a promising new approach to genome-wide splicing analysis using high density sequencing methods. This project will broaden the study of splicing regulation to the level of the whole genome, allowing the integration of specific splicing regulatory pathways into our understanding of gene regulation and genome function.

Public Health Relevance

Many human diseases, including both cancer and inherited diseases of the neuromuscular systems, are caused by alterations in gene function through a process called alternative pre-mRNA splicing. Although individual changes in splicing have been linked to particular disorders, it is not well understood how programs of splicing affect the larger biology of the cell, and hence how abnormalities in these programs lead to disease. This project will extend our work on methods for examining splicing regulation on a genome wide scale that will allow elucidation of these larger programs of genetic change in disease.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM084317-03
Application #
8006414
Study Section
Molecular Genetics C Study Section (MGC)
Program Officer
Bender, Michael T
Project Start
2009-01-01
Project End
2012-12-31
Budget Start
2011-01-01
Budget End
2011-12-31
Support Year
3
Fiscal Year
2011
Total Cost
$452,943
Indirect Cost
Name
University of California Santa Cruz
Department
Biochemistry
Type
Schools of Arts and Sciences
DUNS #
125084723
City
Santa Cruz
State
CA
Country
United States
Zip Code
95064
Lee, Ji-Ann; Damianov, Andrey; Lin, Chia-Ho et al. (2016) Cytoplasmic Rbfox1 Regulates the Expression of Synaptic and Autism-Related Genes. Neuron 89:113-28
Kurian, Leo; Aguirre, Aitor; Sancho-Martinez, Ignacio et al. (2015) Identification of novel long noncoding RNAs underlying vertebrate cardiovascular development. Circulation 131:1278-1290
Hung, T; Pratt, G A; Sundararaman, B et al. (2015) The Ro60 autoantigen binds endogenous retroelements and regulates inflammatory gene expression. Science 350:455-9
Lee, Suzanne R; Pratt, Gabriel A; Martinez, Fernando J et al. (2015) Target Discrimination in Nonsense-Mediated mRNA Decay Requires Upf1 ATPase Activity. Mol Cell 59:413-25
Arsenio, Janilyn; Kakaradov, Boyko; Metz, Patrick J et al. (2015) Reply to: ""CD8(+) T cell diversification by asymmetric cell division"". Nat Immunol 16:893-4
Ares Jr, Manuel (2015) Coffee with Ribohipster. RNA 21:494-6
Li, Qin; Zheng, Sika; Han, Areum et al. (2014) The splicing regulator PTBP2 controls a program of embryonic splicing required for neuronal maturation. Elife 3:e01201
Pandit, Shatakshi; Zhou, Yu; Shiue, Lily et al. (2013) Genome-wide analysis reveals SR protein cooperation and competition in regulated splicing. Mol Cell 50:223-35
Munding, Elizabeth M; Shiue, Lily; Katzman, Sol et al. (2013) Competition between pre-mRNAs for the splicing machinery drives global regulation of splicing. Mol Cell 51:338-48
Hall, Megan P; Nagel, Roland J; Fagg, W Samuel et al. (2013) Quaking and PTB control overlapping splicing regulatory networks during muscle cell differentiation. RNA 19:627-38

Showing the most recent 10 out of 34 publications