The nematode Caenorhabditis elegans is one of the most important model organisms for biomedical research, because of its biological tractability and because many of its physiological pathways show strong analogies to corresponding pathways in humans. The goal of this project is to complement the highly developed genomics and proteomics of C. elegans with a comprehensive structural and functional characterization of its metabolome, which, surprisingly, has been explored to only a very limited extent. This effort is motivated by several lines of evidence indicating that small molecules of largely undetermined structure play important roles in C. elegans endocrine and exocrine signaling, specifically in key pathways regulating lifespan, development, and metabolism. Central to the proposed research is the use of new NMR-spectroscopic methodology that permits the analysis of complex small molecule mixtures and greatly accelerates both the structure elucidation process and the functional characterization of the detected compounds. This methodology permits to compare complex metabolite samples derived from different C. elegans mutant strains, and to identify the chemical structures of compounds whose biosynthesis is strongly up- or downregulated as a result of a specific mutation. For this project, a small number of mutant strains were selected whose phenotypes suggest a defect in small-molecule signaling affecting lifespan, development, or fat metabolism. NMR-spectroscopy will be used to detect and identify compounds that correlate with these phenotypes. Subsequently, synthetic samples of the identified compounds will be subjected to chemical genetic screens to determine effects on lifespan, developmental regulation and fat metabolism regulation. Compounds that show activity in wild-type C. elegans will be subjected to additional assays with mutant or RNAi strains representative of key genetic pathways related to ageing and development. Successful conclusion of this project will provide a partial structural and functional annotation of the C. elegans metabolome, substantially increasing our understanding of fundamental pathways in C. elegans biology and corresponding disease-relevant pathways in mammals. The small-molecule knowledge generated will not only enable future efforts aimed at more varied chemical genetic screens exploring additional aspects of the biology and ecology of C. elegans, but also of nematode species relevant in agriculture or medicine. Furthermore, methodology developed for characterizing C. elegans signaling molecules will facilitate similar studies toward structural and functional characterization of small molecule metabolites from other model organisms.

Public Health Relevance

The pervasive physiological changes associated with aging are reflected in age- dependent increases in the incidence of many diseases, including, diabetes, cancer, neurological disorders, heart disease, and osteoporosis. In nematodes, endogenous compounds called ascarosides have been shown to significantly retard the effects of ageing and increase lifespan. The proposed study aims to investigate the biological mechanisms through which these and other endogenous compounds modulate lifespan and development in nematodes, which will contribute to our understanding of the causes of ageing in humans.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
1R01GM088290-01A1
Application #
7889994
Study Section
Cellular Mechanisms in Aging and Development Study Section (CMAD)
Program Officer
Maas, Stefan
Project Start
2010-05-01
Project End
2014-04-30
Budget Start
2010-05-01
Budget End
2011-04-30
Support Year
1
Fiscal Year
2010
Total Cost
$268,481
Indirect Cost
Name
Boyce Thompson Institute for Plant Research
Department
Type
DUNS #
045666088
City
Ithaca
State
NY
Country
United States
Zip Code
14853
Liu, Zheng; Kariya, Maro J; Chute, Christopher D et al. (2018) Predator-secreted sulfolipids induce defensive responses in C. elegans. Nat Commun 9:1128
Kanzaki, Natsumi; Tsai, Isheng J; Tanaka, Ryusei et al. (2018) Biology and genome of a newly discovered sibling species of Caenorhabditis elegans. Nat Commun 9:3216
Falcke, Jan M; Bose, Neelanjan; Artyukhin, Alexander B et al. (2018) Linking Genomic and Metabolomic Natural Variation Uncovers Nematode Pheromone Biosynthesis. Cell Chem Biol 25:787-796.e12
Artyukhin, Alexander B; Zhang, Ying K; Akagi, Allison E et al. (2018) Metabolomic ""Dark Matter"" Dependent on Peroxisomal ?-Oxidation in Caenorhabditis elegans. J Am Chem Soc 140:2841-2852
Fagan, Kelli A; Luo, Jintao; Lagoy, Ross C et al. (2018) A Single-Neuron Chemosensory Switch Determines the Valence of a Sexually Dimorphic Sensory Behavior. Curr Biol 28:902-914.e5
Zhang, Ying K; Sanchez-Ayala, Marco A; Sternberg, Paul W et al. (2017) Improved Synthesis for Modular Ascarosides Uncovers Biological Activity. Org Lett 19:2837-2840
Panda, Oishika; Akagi, Allison E; Artyukhin, Alexander B et al. (2017) Biosynthesis of Modular Ascarosides in C. elegans. Angew Chem Int Ed Engl 56:4729-4733
Hsueh, Yen-Ping; Gronquist, Matthew R; Schwarz, Erich M et al. (2017) Nematophagous fungus Arthrobotrys oligospora mimics olfactory cues of sex and food to lure its nematode prey. Elife 6:
Hussey, Rosalind; Stieglitz, Jon; Mesgarzadeh, Jaleh et al. (2017) Pheromone-sensing neurons regulate peripheral lipid metabolism in Caenorhabditis elegans. PLoS Genet 13:e1006806
Ludewig, Andreas H; Gimond, Clotilde; Judkins, Joshua C et al. (2017) Larval crowding accelerates C. elegans development and reduces lifespan. PLoS Genet 13:e1006717

Showing the most recent 10 out of 50 publications