Mitochondria are dynamic membrane organelles that undergo division and fusion in highly regulated manners. The balance between these opposing activities plays a critical role in controlling mitochondrial structure and function. Mitochondrial division and fusion are mediated by conserved dynamin-related GTPases that include dynamin-related protein 1 (Drp1) for division, and mitofusin and optic atrophy 1 (Opa1) for fusion. Inhibition of mitochondrial division increases the size of the mitochondria due to ongoing fusion, whereas inhibition of fusion leads to fragmentation of the mitochondria. Abnormalities in mitochondrial division and fusion are associated with many neurodegenerative diseases, such as autosomal dominant optic atrophy, Charcot-Marie-Tooth neuropathy, Alzheimer's disease, Huntington's disease, and Parkinson's disease. Understanding the pathogenesis of these diseases requires a deeper knowledge of the molecular mechanism of mitochondrial dynamics. In this proposed research, we will identify and characterize novel proteins that bind to and regulate the central mitochondrial division protein Drp1. We have been developing innovative approaches to achieve this goal by combining two technologies - in vitro protein-protein interaction analysis using functional protein microarrays and in vivo protein-protein interaction analysis using the chemically inducible hetero-dimerization system consisting two proteins, the FK506-binding protein (FKBP) and the rapamycin-binding domain of mTOR (FRB). Using protein microarrays, we have performed a genome- wide search and identified 18 Drp1-binding proteins. In this revision, we will validate their interactions with Drp1 in live cells using the FBP-FRB hetero-dimerization system. Finally, we will determine their functional importance in mitochondrial division using gene knockdown approaches. Therefore, this study will provide a novel mechanistic insight into mitochondrial division.

Public Health Relevance

Abnormalities in mitochondrial division are associated with many neurological disorders. To gain a better understanding of the pathogenesis of these diseases, we will investigate the molecular mechanisms of mitochondrial division by identifying and characterizing proteins that bind and regulate Drp1, a central component for this process.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Research Project (R01)
Project #
Application #
Study Section
Special Emphasis Panel (ZGM1)
Program Officer
Anderson, Vernon
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Johns Hopkins University
Anatomy/Cell Biology
Schools of Medicine
United States
Zip Code
Kameoka, Shoichiro; Adachi, Yoshihiro; Okamoto, Koji et al. (2018) Phosphatidic Acid and Cardiolipin Coordinate Mitochondrial Dynamics. Trends Cell Biol 28:67-76
Bordt, Evan A; Clerc, Pascaline; Roelofs, Brian A et al. (2017) The Putative Drp1 Inhibitor mdivi-1 Is a Reversible Mitochondrial Complex I Inhibitor that Modulates Reactive Oxygen Species. Dev Cell 40:583-594.e6
Adachi, Yoshihiro; Itoh, Kie; Iijima, Miho et al. (2017) Assay to Measure Interactions between Purified Drp1 and Synthetic Liposomes. Bio Protoc 7:
Cho, Bongki; Cho, Hyo Min; Jo, Youhwa et al. (2017) Constriction of the mitochondrial inner compartment is a priming event for mitochondrial division. Nat Commun 8:15754
Manczak, Maria; Kandimalla, Ramesh; Fry, David et al. (2016) Protective effects of reduced dynamin-related protein 1 against amyloid beta-induced mitochondrial dysfunction and synaptic damage in Alzheimer's disease. Hum Mol Genet 25:5148-5166
Roy, Madhuparna; Itoh, Kie; Iijima, Miho et al. (2016) Parkin suppresses Drp1-independent mitochondrial division. Biochem Biophys Res Commun 475:283-8
Kandimalla, Ramesh; Manczak, Maria; Fry, David et al. (2016) Reduced dynamin-related protein 1 protects against phosphorylated Tau-induced mitochondrial dysfunction and synaptic damage in Alzheimer's disease. Hum Mol Genet 25:4881-4897
Adachi, Yoshihiro; Itoh, Kie; Yamada, Tatsuya et al. (2016) Coincident Phosphatidic Acid Interaction Restrains Drp1 in Mitochondrial Division. Mol Cell 63:1034-43
Bannwarth, Sylvie; Ait-El-Mkadem, Samira; Chaussenot, Annabelle et al. (2016) Reply: High prevalence of CHCHD10 mutations in patients with frontotemporal dementia from China. Brain 139:e22
Genin, Emmanuelle C; Plutino, Morgane; Bannwarth, Sylvie et al. (2016) CHCHD10 mutations promote loss of mitochondrial cristae junctions with impaired mitochondrial genome maintenance and inhibition of apoptosis. EMBO Mol Med 8:58-72

Showing the most recent 10 out of 54 publications