The germ lineage is the guardian of the genome and gatekeeper of the genetic, and epigenetic, information that is passed between generations. An essential characteristic of germ cells is their underlying totipotency: the inherent capacity to generate all tissues. Totipotency is an epigenetic characteristic-- processes that affect the epigenetic content of the germ line genome not only have the potential to affect germ line and somatic development within an individual, but can also affect developmental processes in subsequent generations. Our long-term goal is to understand the epigenetic processes that operate during the germ cell cycle within and between generations: i.e., how is heritable epigenetic content is established, how is it recognized and interpreted, and how is it reprogrammed as the germ line progresses through each stage? My lab has been at the forefront of establishing the nematode C. elegans as an exceptional model for studying these processes, as it possesses numerous genetic and molecular strengths that make both intra- and trans-generational studies of the germ line cycle feasible. Furthermore, the process of germ cell specification in C. elegans is remarkably similar to specification in mammals. These include a mixed soma/germline/embryonic stem cell (ESC)-like phase, a prolonged G2-stage cell cycle arrest, genome-wide epigenetic reprogramming, and transient specialized regulation of RNA Pol II. Indeed, observations made in C. elegans have stimulated the investigations in mammals that have cemented these similarities. One of these similarities is the focus of the proposed research: the unique regulation of RNA Pol II during primordial germ cell (PGC) specification. In many animals, including worms, flies, frogs, and mice, there is a period of RNA Pol II inactivity that accompanies PGC specification. In all species this is observed as the absence of the elongating RNA Pol II phospho-epitope, Ser2P. We have recently shown that in C. elegans, there is a curious appearance of Ser2P at PGC specification that is transient and regulated by kinases in a manner distinct from the surrounding somatic cells. Such regulation may contribute to, or be a special characteristic of, germ line totipotency as reports suggest Ser2P shows unique regulation in pluripotent stem cells. We are poised to identify the mechanisms that regulate Pol II during PGC specification, identify its genomic distribution in the nascent PGCs, and identify the transcriptome that may contribute to the functions of early and post-embryonic germ cell development. This will yield important insights into conserved aspects of germ cell development, and provide further paradigms for similar investigations in mammals. Given the absolute importance of the germ line for both trans-generational genome protection and epigenetic modes of inheritance, these studies are highly significant as they will inform how these processes proceed normally, and why when disrupted they lead to human congenital and fertility defects.

Public Health Relevance

The proposed research is highly relevant to public health, as it focuses on epigenetic mechanisms that affect the genome in the germ line, and thus mechanisms that can contribute to heritable forms of human disease. These studies also impact the nascent realization that epigenetic errors can lead to trans-generational defects. They are therefore relevant to NIH's mission to develop fundamental understanding the causes of human disease states, and ultimately reduce the burdens of human developmental defects, human sterility, and resulting disabilities.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Research Project (R01)
Project #
Application #
Study Section
Development - 1 Study Section (DEV1)
Program Officer
Haynes, Susan R
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Emory University
Schools of Arts and Sciences
United States
Zip Code
Ahn, Jeong H; Rechsteiner, Andreas; Strome, Susan et al. (2016) A Conserved Nuclear Cyclophilin Is Required for Both RNA Polymerase II Elongation and Co-transcriptional Splicing in Caenorhabditis elegans. PLoS Genet 12:e1006227
Bowman, Elizabeth A; Kelly, William G (2014) RNA polymerase II transcription elongation and Pol II CTD Ser2 phosphorylation: A tail of two kinases. Nucleus 5:224-36
Kelly, William G (2014) Transgenerational epigenetics in the germline cycle of Caenorhabditis elegans. Epigenetics Chromatin 7:6
Li, Tengguo; Kelly, William G (2014) A role for WDR5 in TRA-1/Gli mediated transcriptional control of the sperm/oocyte switch in C. elegans. Nucleic Acids Res 42:5567-81
Bowman, Elizabeth Anne; Bowman, Christopher Ray; Ahn, Jeong H et al. (2013) Phosphorylation of RNA polymerase II is independent of P-TEFb in the C. elegans germline. Development 140:3703-13
Kelly, William G; Katz, David J (2009) The wisdom of Weismann: epigenetic erasure mechanisms and germ line immortality. Cell Cycle 8:2131-2