Dysregulation of signal transduction pathways that control cell growth, differentiation, apoptosis, and motility is associated with many human pathologies. One of the key kinases involved in regulation of these pathways is the Protein Kinase C (PKC) family of isoenzymes. Because of the central role of these enzymes in signal transduction and human disease, the need for isoform-specific modulators of PKC activity ? both for therapeutic and research purposes ? is widely recognized as one of the major challenges in the field. The progress in this area has been significantly impeded by poor understanding of the molecular basis of PKC activation and regulation. Indeed, PKC presents significant challenges for conventional structural biology approaches due to its multi-modular structure, the associated inter-domain flexibility, and the amphiphilic nature of the N-terminal regulatory domain that undergoes membrane insertion upon enzyme activation. The long-term objective of my laboratory is to understand the molecular basis of activation of PKC isoforms through biophysical and biochemical studies of their most variable domains. The specific objective of this proposal is to characterize the key inter-domain and domain-cofactor interactions and test several novel hypotheses about their role in the activation process of the ? isoform of PKC. Our experimental approach makes an extensive use of the structural and functional autonomy of the PKC? domains and integrates advanced solution NMR techniques, fluorescence spectroscopy, X-ray crystallography, mutagenesis, and in-vitro membrane binding assays.
The Specific Aims of this proposal are directed at (1) identifying the structural and functional interplay of lipid-binding domains essential for the PKC? membrane-insertion step and tumor-promoting response, and (2) testing the hypotheses that the C-terminal domain of PKC? serves as a membrane anchor and an intra-molecular protein interaction module. We anticipate that our findings will: generate insight into isoform-specific regulation of PKC? by identifying key residues involved in the interactions with membranes/membrane-embedded ligands and inter-domain interactions; provide a molecular platform for the design of isoform-specific agents that modulate the activity of PKC? through interference with its membrane binding and/or inter-domain interactions; and establish a structural framework for interpretation of in vitro and in vivo functional data on conventional PKC isoforms.

Public Health Relevance

Protein Kinase C (PKC) is an enzyme that has been implicated in many human pathologies. We will characterize the structure and function of PKC domains that are responsible for the control of enzymatic activity. The results of the proposed studies will facilitate the development of novel ways to prevent the progression of cancer and cardiac disease.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
3R01GM108998-05S1
Application #
9706485
Study Section
Biochemistry and Biophysics of Membranes Study Section (BBM)
Program Officer
Koduri, Sailaja
Project Start
2014-09-01
Project End
2019-08-31
Budget Start
2018-09-01
Budget End
2019-08-31
Support Year
5
Fiscal Year
2018
Total Cost
Indirect Cost
Name
Texas A&M Agrilife Research
Department
Biochemistry
Type
Schools of Arts and Sciences
DUNS #
847205713
City
College Station
State
TX
Country
United States
Zip Code
77843
Katti, Sachin; Her, Bin; Srivastava, Atul K et al. (2018) High affinity interactions of Pb2+ with synaptotagmin I. Metallomics 10:1211-1222
Yang, Yuan; Shu, Chang; Li, Pingwei et al. (2018) Structural Basis of Protein Kinase C? Regulation by the C-Terminal Tail. Biophys J 114:1590-1603
Stewart, Mikaela D; Igumenova, Tatyana I (2017) Toggling of Diacylglycerol Affinity Correlates with Conformational Plasticity in C1 Domains. Biochemistry 56:2637-2640
Katti, Sachin; Nyenhuis, Sarah B; Her, Bin et al. (2017) Non-Native Metal Ion Reveals the Role of Electrostatics in Synaptotagmin 1-Membrane Interactions. Biochemistry 56:3283-3295
Morales, Krystal A; Yang, Yuan; Cole, Taylor R et al. (2016) Dynamic Response of the C2 Domain of Protein Kinase C? to Ca(2+) Binding. Biophys J 111:1655-1667
Igumenova, Tatyana I (2015) Dynamics and Membrane Interactions of Protein Kinase C. Biochemistry 54:4953-68