Nitric oxide (NO) is an important signaling molecule that regulates diverse functions relevant to cardiovascular function, apoptosis and angiogenesis. NO is best known for its ability to stimulate soluble guanylyl cyclase (sGC) to produce cGMP and stimulate its downstream signaling pathways. However, NO can also covalently modify cysteines via S-nitrosation (addition of a NO moiety to the cysteine of a protein, SNO). Although this reversible post-translational modification is increasingly recognized as an important regulatory mechanism of protein function, and to play a role in cardiac protection, dynamic regulation of protein nitrosation specificity is poorly understood. Our collaborative team has made the exciting observation that sGC, the key NO receptor, modulates the level of nitrosation of specific proteins in cardiomyocytes and smooth muscle cells. Preliminary data showed that sGC increases nitrosation by a protein-protein interaction-driven SNO transfer (transnitrosation). Moreover, this increased nitrosation is due, for a specific subset of proteins, to the association of sGC with thioredoxin 1 (Trx1), a cardiac protective thiol-redox protein with both transnitrosation and denitrosation activities. Initial mass spectrometry and biochemical analyses showed that sGC transnitrosates Trx1, which in turn nitrosates a specific subset of targets, a finding supported by shTrx1 knockdown experiments in cardiomyocytes. These novel observations lead to the provocative idea that sGC modulates S-nitrosation specificity via a transnitrosation cascade that includes an S-nitrosated Trx1 intermediate. This study aims to answer three critical questions based on this hypothesis.
Aim1 : What is the mechanism of sGC transnitrosation of Trx1? We will identify key cysteines (Cys) responsible for sGC transfer of SNO to Trx1 and for interaction via mutagenesis and biochemical analyses.
Aim2 : What are the specific targets of the sGC/Trx1 transnitrosation cascade and the mechanisms underlying target specificity? Using novel and highly specific proteomics approaches, we will quantify the SNO-proteomes modulated by the sGC/Trx1 transnitrosation cascade under nitrosative and oxidative conditions and determine consensus sequence motifs among the target proteins.
Aim3 : Is sGC-mediated transnitrosation an anti-apoptotic mechanism? NO signaling and Trx1 are crucial components of the anti-apoptotic response to stress. Among the sGC/Trx1 transnitrosation targets identified is the chloride intracellular channel 4 (CLIC4), a regulator of apoptosis, whose nuclear translocation is modulated via specific nitrosation. We will determine whether sGC/Trx1 transnitrosation of CLIC4 is an important inhibitory mechanism of angiotensin II-induced apoptosis of cardiomyocytes, underlying the potential role of this newly discovered transnitrosation cascade in cardiac remodeling following heart failure. This multi-PI project could lead to the discovery of novel cardioprotective pathway driven by specific S-nitrosation.

Public Health Relevance

Proteins can be modified by the gaseous molecule nitric oxide (NO), thus changing their properties. We propose to investigate a novel mechanism of modulating this NO modification, which could have a critical role in cardiac cells survival. This project will help us to understand and potentially correct heart failure, which involves cardiac cel death.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
1R01GM112415-01A1
Application #
8894270
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Barski, Oleg
Project Start
2015-04-01
Project End
2019-01-31
Budget Start
2015-04-01
Budget End
2016-01-31
Support Year
1
Fiscal Year
2015
Total Cost
Indirect Cost
Name
Rutgers University
Department
Pharmacology
Type
Schools of Medicine
DUNS #
078795851
City
Newark
State
NJ
Country
United States
Zip Code
Wu, Changgong; Liu, Tong; Wang, Yan et al. (2018) Biotin Switch Processing and Mass Spectrometry Analysis of S-Nitrosated Thioredoxin and Its Transnitrosation Targets. Methods Mol Biol 1747:253-266
Huang, Can; Alapa, Maryam; Shu, Ping et al. (2017) Guanylyl cyclase sensitivity to nitric oxide is protected by a thiol oxidation-driven interaction with thioredoxin-1. J Biol Chem 292:14362-14370
Beuve, Annie (2017) Thiol-Based Redox Modulation of Soluble Guanylyl Cyclase, the Nitric Oxide Receptor. Antioxid Redox Signal 26:137-149
Zhou, Junsong; Wu, Yi; Chen, Fengwu et al. (2017) The disulfide isomerase ERp72 supports arterial thrombosis in mice. Blood 130:817-828
Crassous, Pierre-Antoine; Shu, Ping; Huang, Can et al. (2017) Newly Identified NO-Sensor Guanylyl Cyclase/Connexin 43 Association Is Involved in Cardiac Electrical Function. J Am Heart Assoc 6:
Wu, Changgong; Dai, Huacheng; Yan, Lin et al. (2017) Sulfonation of the resolving cysteine in human peroxiredoxin 1: A comprehensive analysis by mass spectrometry. Free Radic Biol Med 108:785-792
Beuve, Annie; Wu, Changgong; Cui, Chuanlong et al. (2016) Identification of novel S-nitrosation sites in soluble guanylyl cyclase, the nitric oxide receptor. J Proteomics 138:40-7
Heckler, Erin J; Kholodovych, Vladyslav; Jain, Mohit et al. (2015) Mapping Soluble Guanylyl Cyclase and Protein Disulfide Isomerase Regions of Interaction. PLoS One 10:e0143523
Marazioti, Antonia; Bucci, Mariarosaria; Coletta, Ciro et al. (2011) Inhibition of nitric oxide-stimulated vasorelaxation by carbon monoxide-releasing molecules. Arterioscler Thromb Vasc Biol 31:2570-6