Nitric oxide (NO) is an important signaling molecule that regulates diverse functions relevant to vascular function, apoptosis and angiogenesis. NO is best known for its ability to stimulate soluble guanylyl cyclase (now called GC1) to produce cGMP and stimulate its downstream signaling pathways. However, NO can also covalently modify cysteines (Cys) via S-nitrosation or S-nitrosylation (addition of a NO moiety to the cysteine of a protein, SNO). Although this reversible post-translational modification is increasingly recognized as an important regulatory mechanism of protein function, dynamic regulation of protein nitrosation specificity is poorly understood. Our most recent investigations reveal that GC1 has a transnitrosylase activity, i.e. GC1 has the ability to directly transfer SNO to specific targets by protein-protein interaction (transnitrosation). This transnitrosation activity does not require the cGMP forming activity of GC1 and can be accomplished by a single subunit of GC1 (formation of cGMP requires 2 subunits). Furthermore, we showed that one transnitrosation target of GC1 is oxidized thioredoxin 1 (oTrx1), a thiol-redox protein that modulates cellular S-nitrosation. In fact, oxidative/nitrosative conditions appear to favor the GC1-Trx1 complex. Using advanced proteomics approaches, we recently identified the Cys in GC1 and Trx1 that are involved in the SNO transfer in a purified system, and the Cys of proteins targeted by the GC1/Trx1 transnitrosation cascade in smooth muscle and cardiac cells. Our hypothesis is that the function of GC1 transnitrosation activity is an adaptive response to oxidative stress and potentially compensates for the dysfunction of the canonical NO-GC1-cGMP pathway that occurs in oxidative conditions. To explore this provocative hypothesis, we propose to conduct mutational analysis of the Cys we have identified to characterize the mechanism of transnitrosation in smooth muscle and cardiac cells. By comparing the targets of GC1, Trx1 and both we will determine the mechanisms underlying target specificity. We will determine how GC1/Trx1 transnitrosation of specific targets affects their cellular function. For this, we will use cell lines and primary cells isolated from a novel mouse knock-in (KI) of a Cys of GC1 involved in transnitrosation. To determine the physiological relevance of GC1- and GC1/Trx1-transnitrosation in the cardiovascular system and the adaptive response to stress, we will use the Cys KI mouse model and inhibitory peptides that disrupt the GC1/Trx1 transnitrosating complex under Angiotensin II-induced oxidative stress. This project could lead to the discovery of novel cardiovascular protective pathways driven by specific S- nitrosation.

Public Health Relevance

Proteins can be modified by the gaseous molecule nitric oxide (NO), thus changing their properties. We propose to investigate a novel mechanism of modulating this NO modification, which could have a critical role in cardiac hypertrophy and hypertension. This project will help us understand and potentially correct hypertension and heart failure.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
2R01GM112415-05A1
Application #
10119473
Study Section
Vascular Cell and Molecular Biology Study Section (VCMB)
Program Officer
Barski, Oleg
Project Start
2015-04-01
Project End
2024-08-31
Budget Start
2020-09-20
Budget End
2021-08-31
Support Year
5
Fiscal Year
2020
Total Cost
Indirect Cost
Name
Rutgers University
Department
Pharmacology
Type
Schools of Medicine
DUNS #
078795851
City
Newark
State
NJ
Country
United States
Zip Code
07103
Wu, Changgong; Liu, Tong; Wang, Yan et al. (2018) Biotin Switch Processing and Mass Spectrometry Analysis of S-Nitrosated Thioredoxin and Its Transnitrosation Targets. Methods Mol Biol 1747:253-266
Zhou, Junsong; Wu, Yi; Chen, Fengwu et al. (2017) The disulfide isomerase ERp72 supports arterial thrombosis in mice. Blood 130:817-828
Crassous, Pierre-Antoine; Shu, Ping; Huang, Can et al. (2017) Newly Identified NO-Sensor Guanylyl Cyclase/Connexin 43 Association Is Involved in Cardiac Electrical Function. J Am Heart Assoc 6:
Wu, Changgong; Dai, Huacheng; Yan, Lin et al. (2017) Sulfonation of the resolving cysteine in human peroxiredoxin 1: A comprehensive analysis by mass spectrometry. Free Radic Biol Med 108:785-792
Huang, Can; Alapa, Maryam; Shu, Ping et al. (2017) Guanylyl cyclase sensitivity to nitric oxide is protected by a thiol oxidation-driven interaction with thioredoxin-1. J Biol Chem 292:14362-14370
Beuve, Annie (2017) Thiol-Based Redox Modulation of Soluble Guanylyl Cyclase, the Nitric Oxide Receptor. Antioxid Redox Signal 26:137-149
Beuve, Annie; Wu, Changgong; Cui, Chuanlong et al. (2016) Identification of novel S-nitrosation sites in soluble guanylyl cyclase, the nitric oxide receptor. J Proteomics 138:40-7
Heckler, Erin J; Kholodovych, Vladyslav; Jain, Mohit et al. (2015) Mapping Soluble Guanylyl Cyclase and Protein Disulfide Isomerase Regions of Interaction. PLoS One 10:e0143523
Marazioti, Antonia; Bucci, Mariarosaria; Coletta, Ciro et al. (2011) Inhibition of nitric oxide-stimulated vasorelaxation by carbon monoxide-releasing molecules. Arterioscler Thromb Vasc Biol 31:2570-6