Cardiovascular dysfunction is a major contributor to sepsis-induced death in critically ill patients. Despite decades of intensive study, the basic mechanisms remain elusive. In particular, therapeutic interventions aimed at a single mediator or pathways of inflammation have failed to improve cardiac function and survival outcome in sepsis. Thus, continuing search for effective therapeutic reagents which target multiple factors is greatly needed. Recent identified microRNAs may provide new targets for effective sepsis therapy. Our latest work has discovered, for example, that: 1) miR-223 (-5p & -3p) are significantly reduced in mouse hearts after severe sepsis; 2) global loss of duplex miR-223 aggravated sepsis-induced cardiac dysfunction and mortality; and 3) miR-223-5p inhibited the expression of TNFR1 and Sema3A (a ligand of TLRs), while miR-223-3p repressed the expression of IL-6, STAT3, MIP-1?MIP-2 in macrophages and myocytes. Given that each of these molecules can potentially contribute to sepsis-induced cardiac dysfunction and mortality, it will be significant to test the effects of global elevation of duplex miR-223 on sepsis-caused injury. Our pilot data also indicate that: 1) lesser amounts of duplex miR-223 are encased within exosomes isolated from the blood of septic mice (referred to as septic exosomes), compared to healthy exosomes and 2) septic exosomes impaired cardiomyocyte contractility and stimulated macrophages to release pro-inflammatory cytokines (i.e. TNF-?IL-6). Thus, it will be important to test whether duplex miR-223 is a critical limiting factor whose reduction contributes to septic exosome-induced detrimental effects on cardiac function and mortality. Finally, an important translational question is raised: are there any positive therapeutic effects of engineering exosomes to contain extra miR-223 on sepsis? In this proposal, we hypothesize that global elevation of duplex miR-223 limits sepsis-induced cardiac dysfunction and mortality through targeting diverse mediators at multiple levels, and loss of duplex miR-223 contributes to septic exosome-triggered cardiac dysfunction. These ideas will be tested by pursuing three specific aims: 1) Using a transgenic mouse model, we will test whether global elevation of duplex miR-223 attenuates sepsis-induced myocardial depression and mortality; 2) Utilizing duplex miR-223-null exosomes and septic exosomes isolated from the blood of miR-223-knockout mice and CLP-operated mice to test whether septic exosome-mediated cardiac dysfunction and mortality is ascribed to the reduction of duplex miR-223; and 3) We will use bone marrow-derived mesenchymal stem cells (MSCs) as a source of miR-223-exosomes to determine the therapeutic effects of duplex-miR-223-engineered exosomes on sepsis-induced cardiac dysfunction and mortality. Together, the proposed studies are expected to unveil a previously unrecognized role of duplex miR-223 in sepsis-induced heart failure. Additionally, they are expected to provide novel insights that lead to the development of original exosome-based therapeutic strategies for reducing septic death.

Public Health Relevance

Sepsis remains the leading cause of death in critically ill patients. The proposed research is relevant to public health because the elucidation of duplex miR-223/exosomes in sepsis-induced cardiac dysfunction and mortality is ultimately expected to open new avenues and develop novel therapeutic tools for transferring those beneficial factors into the septic heart, thereby resulting in an improved contractile function. Thus, the proposed project is relevant to the part of NIH's mission that pertains to advancing fundamental knowledge and translational study that will help to reduce the burdens of human disability.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Project (R01)
Project #
5R01GM112930-04
Application #
9394019
Study Section
Surgery, Anesthesiology and Trauma Study Section (SAT)
Program Officer
Dunsmore, Sarah
Project Start
2015-01-01
Project End
2019-12-31
Budget Start
2018-01-01
Budget End
2019-12-31
Support Year
4
Fiscal Year
2018
Total Cost
Indirect Cost
Name
University of Cincinnati
Department
Pharmacology
Type
Schools of Medicine
DUNS #
041064767
City
Cincinnati
State
OH
Country
United States
Zip Code
45221
Chen, Yanfang; Tang, Yaoliang; Fan, Guo-Chang et al. (2018) Extracellular vesicles as novel biomarkers and pharmaceutic targets of diseases. Acta Pharmacol Sin 39:499-500
Peng, Jiangtong; Li, Yutian; Wang, Xiaohong et al. (2018) An Hsp20-FBXO4 Axis Regulates Adipocyte Function through Modulating PPAR? Ubiquitination. Cell Rep 23:3607-3620
Mu, Xingjiang; Wang, Xiaohong; Huang, Wei et al. (2018) Circulating Exosomes Isolated from Septic Mice Induce Cardiovascular Hyperpermeability Through Promoting Podosome Cluster Formation. Shock 49:429-441
Hong, Guangliang; Zheng, Dong; Zhang, Lulu et al. (2018) Administration of nicotinamide riboside prevents oxidative stress and organ injury in sepsis. Free Radic Biol Med 123:125-137
Yu, You-Jiang; Wang, Xiao-Hong; Fan, Guo-Chang (2018) Versatile effects of bacterium-released membrane vesicles on mammalian cells and infectious/inflammatory diseases. Acta Pharmacol Sin 39:514-533
Salem, Esam S B; Fan, Guo-Chang (2017) Pathological Effects of Exosomes in Mediating Diabetic Cardiomyopathy. Adv Exp Med Biol 998:113-138
Zheng, Dong; Yu, Yong; Li, Minghui et al. (2016) Inhibition of MicroRNA 195 Prevents Apoptosis and Multiple-Organ Injury in Mouse Models of Sepsis. J Infect Dis 213:1661-70
Hu, Jing; Al-Waili, Daniah; Hassan, Aishlin et al. (2016) Inhibition of cerebral vascular inflammation by brain endothelium-targeted oligodeoxynucleotide complex. Neuroscience 329:30-42
Ni, Rui; Cao, Ting; Xiong, Sidong et al. (2016) Therapeutic inhibition of mitochondrial reactive oxygen species with mito-TEMPO reduces diabetic cardiomyopathy. Free Radic Biol Med 90:12-23
Ni, Rui; Zheng, Dong; Xiong, Sidong et al. (2016) Mitochondrial Calpain-1 Disrupts ATP Synthase and Induces Superoxide Generation in Type 1 Diabetic Hearts: A Novel Mechanism Contributing to Diabetic Cardiomyopathy. Diabetes 65:255-68

Showing the most recent 10 out of 24 publications