Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
2R01HL037127-04
Application #
3352682
Study Section
Physiology Study Section (PHY)
Project Start
1986-07-01
Project End
1989-09-29
Budget Start
1989-07-01
Budget End
1989-09-29
Support Year
4
Fiscal Year
1989
Total Cost
Indirect Cost
Name
University of Texas Medical Br Galveston
Department
Type
Schools of Medicine
DUNS #
041367053
City
Galveston
State
TX
Country
United States
Zip Code
77555
Arora, A; Rinehart, D; Szabo, G et al. (2000) Refolded outer membrane protein A of Escherichia coli forms ion channels with two conductance states in planar lipid bilayers. J Biol Chem 275:1594-600
Otero, A S; Doyle, M B; Hartsough, M T et al. (1999) Wild-type NM23-H1, but not its S120 mutants, suppresses desensitization of muscarinic potassium current. Biochim Biophys Acta 1449:157-68
Gao, Z; Ni, Y; Szabo, G et al. (1999) Palmitoylation of the recombinant human A1 adenosine receptor: enhanced proteolysis of palmitoylation-deficient mutant receptors. Biochem J 342 ( Pt 2):387-95
Gray, M; Szabo, G; Otero, A S et al. (1998) Distinct mechanisms for K+ efflux, intoxication, and hemolysis by Bordetella pertussis AC toxin. J Biol Chem 273:18260-7
Otero, A S; Xu, L; Ni, Y et al. (1998) Receptor-independent activation of atrial muscarinic potassium channels in the absence of nucleotides. J Biol Chem 273:28868-72
Densmore, J J; Haverstick, D M; Szabo, G et al. (1996) A voltage-operable current is involved in Ca2+ entry in human lymphocytes whereas ICRAC has no apparent role. Am J Physiol 271:C1494-503
Otero, A S; Yi, X B; Gray, M C et al. (1995) Membrane depolarization prevents cell invasion by Bordetella pertussis adenylate cyclase toxin. J Biol Chem 270:9695-7
Philipson, L H; Kuznetsov, A; Toth, P T et al. (1995) Functional expression of an epitope-tagged G protein-coupled K+ channel (GIRK1). J Biol Chem 270:14604-10
Li, Y; Hanf, R; Otero, A S et al. (1994) Differential effects of pertussis toxin on the muscarinic regulation of Ca2+ and K+ currents in frog cardiac myocytes. J Gen Physiol 104:941-59
Otero, A de S; Sweitzer, N M (1993) Benzoquinoid tyrosine kinase inhibitors are potent blockers of cardiac muscarinic receptor function. Mol Pharmacol 44:595-604

Showing the most recent 10 out of 20 publications