The long-term goal of this project is to determine the role of human cytomegalovirus (HCMV) in the acceleration of vascular diseases such as atherosclerosis, restenosis, and transplant vascular sclerosis (TVS). HCMV is associated with TVS and CR in solid organ transplant patients and we have observed that RCMV significantly accelerates the development of TVS and CR in heart allografts in the rat transplant model. Although we can detect the presence of virus in the transplanted heart throughout the disease course, the number of infected cells in the allograft does not account for the global effects of RCMV infection of the organ in the development of TVS. This lack of correlation suggests that infected cells are influencing the microenvironment via paracrine mechanisms. Analysis of allografts with RCMV-accelerated TVS for host cell gene expression by microarray analysis revealed a significant number of genes involved in tissue remodeling (WH) and angiogenesis (AG) that were highly up-regulated in the organ transplant. In addition our preliminary results indicate that virus-free and serum-free cellular supernatants obtained from HCMV- but not mock- infected cells induce both WH & AG in in vitro assays. Mass Spec analysis of the HCMV secretome identified multiple angiogenic and WH agonists and antagonists that most likely contribute to the tissue remodeling processes. We hypothesize that the spectrum of cytokines and growth factors secreted by CMV-infected cells significantly contribute to the acceleration of TVS and CR in heart allografts through the stimulation of WH and AG. Therefore, in this project we propose the use of viral genetics to unravel the WH and AG mechanisms involved in CMV acceleration of TVS and CR. In the first specific aim of this project we will use HCMV WT and mutant viruses as tools in combination with gel-free LC Mass Spec proteomics and in vitro WH and AG assays to identify specific viral genes and cellular proteins as well as the mechanisms through which viral genes induce tissue-remodeling events. In the second aim of this project we will knock-out the HCMV correlate gene(s) in RCMV and test this virus(es) in WH and AG assays, as well as analyze the viral secretome(s) by Mass Spec analysis. Lastly, we will examine the effect of these mutations on the ability of the virus to accelerate TVS in the RCMV rat heart transplant model. The anticipation is that multiple HCMV genes are responsible for the induction of WH and AG and that we will be able to separate some of these processes to examine the effect of mutation of correlate RCMV genes in the acceleration of TVS. ? ? ?

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
1R01HL088603-01A1
Application #
7387001
Study Section
Special Emphasis Panel (ZRG1-IDM-M (03))
Program Officer
Schwartz, Lisa
Project Start
2008-05-01
Project End
2013-03-31
Budget Start
2008-05-01
Budget End
2009-03-31
Support Year
1
Fiscal Year
2008
Total Cost
$765,302
Indirect Cost
Name
Oregon Health and Science University
Department
Microbiology/Immun/Virology
Type
Schools of Medicine
DUNS #
096997515
City
Portland
State
OR
Country
United States
Zip Code
97239
Vomaske, Jennifer; Denton, Michael; Kreklywich, Craig et al. (2012) Cytomegalovirus CC chemokine promotes immune cell migration. J Virol 86:11833-44
Orloff, S L; Hwee, Y-K; Kreklywich, C et al. (2011) Cytomegalovirus latency promotes cardiac lymphoid neogenesis and accelerated allograft rejection in CMV naive recipients. Am J Transplant 11:45-55
Caposio, Patrizia; Orloff, Susan L; Streblow, Daniel N (2011) The role of cytomegalovirus in angiogenesis. Virus Res 157:204-11
Viswanathan, Kasinath; Smith, M Shane; Malouli, Daniel et al. (2011) BST2/Tetherin enhances entry of human cytomegalovirus. PLoS Pathog 7:e1002332
Umashankar, Mahadevaiah; Petrucelli, Alex; Cicchini, Louis et al. (2011) A novel human cytomegalovirus locus modulates cell type-specific outcomes of infection. PLoS Pathog 7:e1002444
Botto, Sara; Streblow, Daniel N; DeFilippis, Victor et al. (2011) IL-6 in human cytomegalovirus secretome promotes angiogenesis and survival of endothelial cells through the stimulation of survivin. Blood 117:352-61
Smith, M Shane; Goldman, Devorah C; Bailey, Alexis S et al. (2010) Granulocyte-colony stimulating factor reactivates human cytomegalovirus in a latently infected humanized mouse model. Cell Host Microbe 8:284-91
Vomaske, Jennifer; Varnum, Susan; Melnychuk, Ryan et al. (2010) HCMV pUS28 initiates pro-migratory signaling via activation of Pyk2 kinase. Herpesviridae 1:2
Streblow, D N; Dumortier, J; Moses, A V et al. (2008) Mechanisms of cytomegalovirus-accelerated vascular disease: induction of paracrine factors that promote angiogenesis and wound healing. Curr Top Microbiol Immunol 325:397-415
Dumortier, Jerome; Streblow, Daniel N; Moses, Ashlee V et al. (2008) Human cytomegalovirus secretome contains factors that induce angiogenesis and wound healing. J Virol 82:6524-35