The incidence of acute lung injury (ALI) has been recently estimated at 86.2 per 100,000 person-years and its mortality rate at 38.5%. These figures imply that 74,500 persons die from ALI each year in the United States, a figure comparable to the deaths from breast cancer or HIV, and that 2.2 million Intensive Care Unit days and 3.6 million hospital days are devoted to the care of patients with ALI. Ventilator-induced lung injury (VILI) has been identified as a contributor to the morbidity and mortality from ALI. Although not yet conclusive, data from clinical trials suggest that prone positioning may improve survival in ALI. A possible reason for this improvement is reduction of VILI. Neutrophils have been shown to play a crucial role in the pathogenesis of VILI and we recently demonstrated that neutrophil metabolic activation occurs early during VILI. The broad, long-term objective of this research is to improve the understanding of mechanisms of VILI and to develop means to prevent or reduce it. To this end, the present grant proposal examines the overarching hypothesis that, by promoting uniform parenchymal aeration and tidal volume distribution throughout the lung, prone positioning leads to a reduction of neutrophil metabolic activation caused by large localized tidal expansion. This hypothesis will be examined in a large animal with physiology similar to the human (i.e., sheep), in three specific aims.
Specific aim 1 examines the effectiveness of the prone position as a means to delay the onset and decrease the severity and topographical heterogeneity of VILI-induced neutrophil activation in initially uninjured lungs ventilated with large tidal volume.
In specific aim 2, a well-characterized experimental model of ALI in which saline lung lavage leads to surfactant depletion and markedly heterogeneous loss of aeration is used to investigate whether the prone position leads to decreased neutrophil activation in dorsal lung regions, which are expected to regain aeration and more uniform tidal expansion as a result of the body position change.
In specific aim 3, a graded increase in tidal volume is used to test the hypothesis that the prone position allows for higher tidal volumes than the supine position without augmenting neutrophil activation in a pre-injured lung. Positron Emission and Computed Tomography imaging and advanced tracer kinetic modeling will be employed to measure regional metabolic activity of neutrophils, pulmonary perfusion and aeration in vivo. It is expected that application of this integrated anatomic, physiologic and molecular imaging approach to the tightly knit specific aims will provide novel insights into the mechanism by which prone positioning may attenuate VILI. The direct clinical applicability of the methodological approach, the similarities in pulmonary physiology between sheep and humans and the use of a well-characterized model of ALI greatly enhance the translational aspect of this project. Consequently, the proposed studies will likely contribute to establishing if a strong rationale exists for the use of prone positioning in the ventilatory management of critically ill patients with ALI, and can be viewed as conducive to subsequent studies in patients.

Public Health Relevance

Acute lung injury (ALI) has been estimated to account for 74,500 deaths and 3.6 million hospital days per year in the United States. Because ventilator-induced lung injury (VILI) contributes to the morbidity and mortality from ALI, interventions that reduce VILI could improve the prognosis of patients with ALI. In this research, we will test whether promoting uniform lung inflation and tidal expansion by prone positioning reduces neutrophil metabolic activation, an early and important event in the pathogenesis of VILI.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Project (R01)
Project #
Application #
Study Section
Respiratory Integrative Biology and Translational Research Study Section (RIBT)
Program Officer
Harabin, Andrea L
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Massachusetts General Hospital
United States
Zip Code
Wellman, Tyler J; de Prost, Nicolas; Tucci, Mauro et al. (2016) Lung Metabolic Activation as an Early Biomarker of Acute Respiratory Distress Syndrome and Local Gene Expression Heterogeneity. Anesthesiology 125:992-1004
Richter, Torsten; Bergmann, Ralf; Musch, Guido et al. (2015) Reduced pulmonary blood flow in regions of injury 2 hours after acid aspiration in rats. BMC Anesthesiol 15:36
Musch, Guido; Winkler, Tilo; Harris, R Scott et al. (2014) Lung [(18)F]fluorodeoxyglucose uptake and ventilation-perfusion mismatch in the early stage of experimental acute smoke inhalation. Anesthesiology 120:683-93
de Prost, Nicolas; Feng, Yan; Wellman, Tyler et al. (2014) 18F-FDG kinetics parameters depend on the mechanism of injury in early experimental acute respiratory distress syndrome. J Nucl Med 55:1871-7
Wellman, Tyler J; Winkler, Tilo; Costa, Eduardo L V et al. (2014) Effect of local tidal lung strain on inflammation in normal and lipopolysaccharide-exposed sheep*. Crit Care Med 42:e491-500
de Prost, Nicolas; Costa, Eduardo L; Wellman, Tyler et al. (2013) Effects of ventilation strategy on distribution of lung inflammatory cell activity. Crit Care 17:R175
Tucci, Mauro R; Costa, Eduardo L V; Wellman, Tyler J et al. (2013) Regional lung derecruitment and inflammation during 16 hours of mechanical ventilation in supine healthy sheep. Anesthesiology 119:156-65
Vidal Melo, Marcos F; Musch, Guido; Kaczka, David W (2012) Pulmonary pathophysiology and lung mechanics in anesthesiology: a case-based overview. Anesthesiol Clin 30:759-84
Wellman, Tyler J; Winkler, Tilo; Costa, Eduardo L V et al. (2012) Effect of regional lung inflation on ventilation heterogeneity at different length scales during mechanical ventilation of normal sheep lungs. J Appl Physiol (1985) 113:947-57
de Prost, Nicolas; Costa, Eduardo L; Wellman, Tyler et al. (2011) Effects of surfactant depletion on regional pulmonary metabolic activity during mechanical ventilation. J Appl Physiol (1985) 111:1249-58

Showing the most recent 10 out of 12 publications