The incidence of hypertension, stroke and coronary artery disease increases dramatically in patients with non- insulin dependent type 2 diabetes. Aberrant Ca2+ influx via L-type CaV1.2 channels (LTCCs) leading to enhanced vascular smooth muscle (VSM) contraction, myogenic tone and blood flow/pressure has been implicated in the chain of events contributing to hyperglycemia (HG)-induced vascular complications during diabetes. Yet, the mechanisms involved in this pathological alteration are unclear. We recently discovered exciting new data indicating that anchoring of protein kinase A (PKA) by the scaffolding protein AKAP150 (AKAP79 is the human ortholog) is required for stimulation of LTCC activity and vasoconstriction during HG and diabetes. This contrasts the conventional notion that increases in cAMP/PKA activity leads to VSM relaxation and vasodilation. Thus, the overall goal of this competitive renewal application is to address two fundamental gaps in knowledge raised by our novel observations: 1) could spatial confinement of sarcolemmal cAMP/PKA signals in VSM during HG promote vasoconstriction? and 2) what upstream mechanisms trigger cAMP/PKA signaling during HG/diabetes? Preliminary data indicate that spatially discrete and heterogeneous cAMP/PKA signaling foster LTCC potentiation and VSM contraction during HG/diabetes. We also provide compelling evidence implicating a novel AKAP150-anchored P2Y11 receptor (P2Y11), which is coupled to GS, as an essential component of PKA-mediated CaV1.2 phosphorylation, functional upregulation of channel activity, enhanced Ca2+ influx, activation of calcineurin (CaN)/NFATc3-dependent signaling and vasoconstriction in HG/diabetes. Compelling results reproducing these pathological changes in native human VSM/arteries from non-diabetic and diabetic patients underscore the translational significance of our data. Beyond an unexpected role for GS-coupled P2Y11 signaling in vascular physiology, the pathological induction of compartmentalized adenylyl cyclase (AC)/PKA signaling leading to VSM contraction during HG/diabetes is a highly innovative concept of our model.
Two aims will be investigated to test the central hypothesis that a macromolecular complex involving the P2Y11, AKAP150, AC and PKA underlies CaV1.2 phosphorylation and LTCC-mediated Ca2+ influx in response to HG/diabetes.
Aim 1 will examine the hypothesis that spatially confined AC/PKA signaling stimulates LTCCs to trigger PKA-mediated VSM contraction and vasoconstriction during HG/diabetes.
Aim 2 will investigate the hypothesis that an AKAP150-anchored P2Y11 complex mediates compartmentalized AC/PKA activity, LTCC upregulation and vasoconstriction during HG/diabetes. Methods used to test these hypotheses will include optical techniques developed by our group, super-resolution microscopy, optogenetics, genetically encoded biosensors, state-of-the-art electrophysiology, molecular biology, telemetry and blood flow measurements. Experiments proposed in this transformative/translational study will provide invaluable mechanistic information that could lay the foundation for novel early intervention therapeutic strategies during diabetic vascular dysfunction.

Public Health Relevance

Cardiovascular complications in the USA have reached pandemic proportions fueled in part by rising obesity rates and diabetes. Vascular complications associated with diabetes contribute to hypertension, heart disease and stroke. Here we will carry out careful quantitative studies to understand the role of a novel AKAP-anchored purinergic signal that stimulates PKA-mediated vasoconstriction during diabetes. The results from the proposed work could inform novel therapeutic strategies for early intervention in the treatment of diabetic hypertension.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Project (R01)
Project #
Application #
Study Section
Vascular Cell and Molecular Biology Study Section (VCMB)
Program Officer
Reid, Diane M
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California Davis
Schools of Medicine
United States
Zip Code
Sato, Daisuke; Dixon, Rose E; Santana, Luis F et al. (2018) A model for cooperative gating of L-type Ca2+ channels and its effects on cardiac alternans dynamics. PLoS Comput Biol 14:e1005906
Dwenger, Marc M; Ohanyan, Vahagn; Navedo, Manuel F et al. (2018) Coronary microvascular Kv1 channels as regulatory sensors of intracellular pyridine nucleotide redox potential. Microcirculation 25:
Ghosh, Debapriya; Nieves-Cintrón, Madeline; Tajada, Sendoa et al. (2018) Dynamic L-type CaV1.2 channel trafficking facilitates CaV1.2 clustering and cooperative gating. Biochim Biophys Acta Mol Cell Res 1865:1341-1355
Nieves-Cintrón, Madeline; Syed, Arsalan U; Nystoriak, Matthew A et al. (2018) Regulation of voltage-gated potassium channels in vascular smooth muscle during hypertension and metabolic disorders. Microcirculation 25:
Smith, F Donelson; Omar, Mitchell H; Nygren, Patrick J et al. (2018) Single nucleotide polymorphisms alter kinase anchoring and the subcellular targeting of A-kinase anchoring proteins. Proc Natl Acad Sci U S A 115:E11465-E11474
Nystoriak, Matthew A; Navedo, Manuel F (2018) Regulation of microvascular function by voltage-gated potassium channels: New tricks for an ""ancient"" dog. Microcirculation 25:
Shen, Ao; Nieves-Cintron, Madeline; Deng, Yawen et al. (2018) Functionally distinct and selectively phosphorylated GPCR subpopulations co-exist in a single cell. Nat Commun 9:1050
Morotti, Stefano; Nieves-Cintrón, Madeline; Nystoriak, Matthew A et al. (2017) Predominant contribution of L-type Cav1.2 channel stimulation to impaired intracellular calcium and cerebral artery vasoconstriction in diabetic hyperglycemia. Channels (Austin) 11:340-346
Nieves-Cintrón, Madeline; Syed, Arsalan U; Buonarati, Olivia R et al. (2017) Impaired BKCa channel function in native vascular smooth muscle from humans with type 2 diabetes. Sci Rep 7:14058
Qian, Hai; Patriarchi, Tommaso; Price, Jennifer L et al. (2017) Phosphorylation of Ser1928 mediates the enhanced activity of the L-type Ca2+ channel Cav1.2 by the ?2-adrenergic receptor in neurons. Sci Signal 10:

Showing the most recent 10 out of 32 publications