HSC transplantations have become a standard of care for treating otherwise incurable blood cancers and genetic diseases. The curing of HIV and leukemia by transplanting HSCs from HIV-resistant patients with a CCR5-D32 mutation has demonstrated the power of stem cell-based therapies for AIDS. However, difficulties in the genetic modifications of autologous HSCs and in finding HLA-compatible CCR5-D32 donors significantly hamper the widespread use of somatic HSC-based AIDS therapies in the clinical setting. Converting adult human cells to induced pluripotent stem cells (iPSCs) provides a unique opportunity to produce immunologically matched gene-edited therapeutic cells for diseases of the blood and immune system as iPSCs can be expanded indefinitely ex vivo, genetically modified using homologous recombination and differentiated into hematopoietic cells. However, transferring this approach to the clinic requires the improvement of iPSC- derived blood cell engraftment, development of robust cGMP-compatible protocols for blood production from iPSCs, and the bi-allelic CCR5 disruption to provide an anti-HIV effect. The proposed studies capitalize on our recent advances in identification of pre-HSC hemogenic endothelium (HE) stage in human ESC/iPSC cultures and progress in locus-specific gene editing in ESC/iPSCs using ZNF-mediated homologous recombination. The three related specific aims are directed at understanding the molecular mechanisms controlling development of HSCs from human PSCs through the HE stage, with the ultimate goal to develop clinically- relevant protocols for ex vivo production of CCR5-knockout autologous HSCs for AIDS therapies.
In aim 1, we will identify the biological regulators guiding the formation of engraftabl hematopoietic cells from HE with a goal to improve production of blood cells with regenerative potential from human PSCs.
In aim 2, we will develop homologous recombination-based technology for the bi-allelic CCR5 knockout in iPSCs and test the engraftability and safety of genetically corrected iPSC-derived blood cells following transplantation in NOD/SCD/IL2Rg-/- (NSG) mice.
In aim 3, we will test whether iPSC-derived CCR5-null cells are protected from HIV-1 challenge in NSG mice. Successful completion of the studies will validate a methodology for generation of regenerative blood cells from iPSCs and their potential use for HIV therapies. The applications of the methodology proposed here will be also useful for basic research and for future clinical applications for modification of any genomic target in iPSCs.

Public Health Relevance

Transplantation of hematopoietic stem cells lacking expression of HIV-1 coreceptor CCR5 holds a promise as an AIDS cure. However, cell sources for these therapeutic cells remain a major limitation for wide spread use of this approach in the clinic. The major goal of the current proposal is to overcome this limitation by developing technologies for producing HIV-resistant engraftable hematopoietic cells from adult somatic cells, which have been reprogrammed to pluripotency (induced pluripotent stem cells; iPSCs).

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL116221-03
Application #
8843534
Study Section
Special Emphasis Panel (ZRG1-AARR-K (04))
Program Officer
Thomas, John
Project Start
2013-08-01
Project End
2018-04-30
Budget Start
2015-05-01
Budget End
2016-04-30
Support Year
3
Fiscal Year
2015
Total Cost
$684,039
Indirect Cost
$133,965
Name
University of Wisconsin Madison
Department
Pathology
Type
Schools of Medicine
DUNS #
161202122
City
Madison
State
WI
Country
United States
Zip Code
53715
Kang, HyunJun; Mesquitta, Walatta-Tseyon; Jung, Ho Sun et al. (2018) GATA2 Is Dispensable for Specification of Hemogenic Endothelium but Promotes Endothelial-to-Hematopoietic Transition. Stem Cell Reports 11:197-211
Suknuntha, Kran; Tao, Lihong; Brok-Volchanskaya, Vera et al. (2018) Optimization of Synthetic mRNA for Highly Efficient Translation and its Application in the Generation of Endothelial and Hematopoietic Cells from Human and Primate Pluripotent Stem Cells. Stem Cell Rev 14:525-534
Slukvin, Igor I; Uenishi, Gene I (2018) Arterial identity of hemogenic endothelium: a key to unlock definitive hematopoietic commitment in hPSC cultures. Exp Hematol :
Park, Mi Ae; Jung, Ho Sun; Slukvin, Igor (2018) Genetic Engineering of Human Pluripotent Stem Cells Using PiggyBac Transposon System. Curr Protoc Stem Cell Biol 47:e63
Wampfler, Julian; Federzoni, Elena A; Torbett, Bruce E et al. (2016) The RNA binding proteins RBM38 and DND1 are repressed in AML and have a novel function in APL differentiation. Leuk Res 41:96-102
Jung, Ho Sun; Uenishi, Gene; Kumar, Akhilesh et al. (2016) A human VE-cadherin-tdTomato and CD43-green fluorescent protein dual reporter cell line for study endothelial to hematopoietic transition. Stem Cell Res 17:401-405
Slukvin, Igor I (2016) Generating human hematopoietic stem cells in vitro -exploring endothelial to hematopoietic transition as a portal for stemness acquisition. FEBS Lett 590:4126-4143
Elcheva, Irina; Brok-Volchanskaya, Vera; Slukvin, Igor (2015) Direct Induction of Hemogenic Endothelium and Blood by Overexpression of Transcription Factors in Human Pluripotent Stem Cells. J Vis Exp :e52910
Kang, HyunJun; Minder, Petra; Park, Mi Ae et al. (2015) CCR5 Disruption in Induced Pluripotent Stem Cells Using CRISPR/Cas9 Provides Selective Resistance of Immune Cells to CCR5-tropic HIV-1 Virus. Mol Ther Nucleic Acids 4:e268
Wang, Cathy X; Torbett, Bruce E (2015) Role of the mammalian target of rapamycin pathway in lentiviral vector transduction of hematopoietic stem cells. Curr Opin Hematol 22:302-8

Showing the most recent 10 out of 15 publications