. The outcomes of cardiac repair with bone marrow mesenchymal stem cell (MSC), a highly heterogeneous cell population, have been variable and generally suboptimal. The efficacy of specific and homogenous MSC subsets defined by antigen expression has not been investigated. Based on preliminary data, our fundamental hypothesis states that transplantation of antigenically-defined CD45-/c-kit-/Sca- 1+/CD90+/CD105- (abbreviated as CD105-) MSC subpopulation will confer greater reparative and regenerative benefits after myocardial infarction (MI) by virtue of enhanced survival, increased retention, improved angiogenesis, greater differentiation into cardiac lineages, and favorable modulation of myocardial matrix. This hypothesis will be tested in a well-established cell culture model in vitro and a mouse model of reperfused MI in vivo, which will yield conclusive results.
Aim 1 will determine whether CD105- MSCs will be more resistant to apoptosis and washout. The susceptibility of murine bone marrow MSCs (Unfractionated, CD45-/c-kit-/Sca-1+/CD90+/CD105+ [abbreviated as CD105+, the precise antigenic control population], and CD105-) to apoptosis will be examined, and the underlying molecular basis elucidated. The expression of adhesion molecules on MSCs will be assessed, and cell retention in vivo will be tested following myocardial injection 2 d after a reperfused MI.
Aim 2 will investigate whether CD105- MSCs produce greater amounts of cardioprotective and angiogenic molecules, and acquire endothelial phenotype. Endothelial and cardiac commitment will be determined by morphology, and assessment of transcription factors and structural proteins. The molecular signaling underlying the angiogenic effects will be elucidated using specific inhibitors and siRNA, with particular attention to VEGFR2-activated pathways.
Aim 3 will establish whether transplantation of CD105- MSCs will induce superior cardiac repair in vivo, and identify the mechanistic basis in a definitive fashion. Unfractionated, and CD105+ and CD105- MSCs will be injected into the infarct borderzone 2 d after a reperfused MI in C57BL/6 mice. Serial echocardiography and a terminal hemodynamic study will be performed to assess left ventricular (LV) function and anatomy. LV structure, infarct size, fibrosis, and myocyte hypertrophy will be assessed by morphometry. Quantitative immunohistochemical methods will be used to precisely determine the contribution of myocyte salvage from apoptosis, angiogenesis, myocyte proliferation, myocyte regeneration, activation of cardiac progenitors, and modulation of calcium handling proteins. Focused proteomic analysis will be performed to identify novel changes in the matrix. For the first time, these studies will critically evaluate the biology of CD105- MSC subset and their efficacy in infarct repair in a comprehensive and thoroughly mechanistic fashion. The impact will be two-fold: (i) biologically, this project will yield novel insights into properties of antigenically-defined MSC populations; and (ii) clinically, the identification and validation of an optimal cell type for cardiac repair will benefit patients with ischemic heart disease and post-MI heart failure.

Public Health Relevance

. Ischemic heart disease is the single most prevalent cause of death and morbidity in all Western countries. Although recent studies indicate that therapy with adult bone marrow mesenchymal stem cells (MSCs) can repair dead heart muscle, the results have been variable, and the mechanisms remain unclear. If transplantation of antigenically-defined MSC subpopulation can induce superior cardiac repair after myocardial infarction, these cells may be utilized for heart repair in patients with ischemic heart disease and heart attacks. The results of the proposed studies will therefore be highly relevant for improving public health, and improving the length and quality of life of millions of patients with ischemic heart disease and heart failure.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
7R01HL117730-06
Application #
9912625
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Wong, Renee P
Project Start
2019-05-03
Project End
2020-04-30
Budget Start
2019-05-03
Budget End
2020-04-30
Support Year
6
Fiscal Year
2017
Total Cost
Indirect Cost
Name
University of Nevada Las Vegas
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
098377336
City
Las Vegas
State
NV
Country
United States
Zip Code
89154
Adamiak, Marta; Cheng, Guangming; Bobis-Wozowicz, Sylwia et al. (2018) Induced Pluripotent Stem Cell (iPSC)-Derived Extracellular Vesicles Are Safer and More Effective for Cardiac Repair Than iPSCs. Circ Res 122:296-309
Chen, Lei; Zhao, Lin; Samanta, Anweshan et al. (2017) STAT3 balances myocyte hypertrophy vis-à-vis autophagy in response to Angiotensin II by modulating the AMPK?/mTOR axis. PLoS One 12:e0179835
Zhao, Lin; Cheng, Guangming; Jin, Runming et al. (2016) Deletion of Interleukin-6 Attenuates Pressure Overload-Induced Left Ventricular Hypertrophy and Dysfunction. Circ Res 118:1918-1929
Samanta, Anweshan; Dawn, Buddhadeb (2016) Remote Ischemic Preconditioning for Cardiac Surgery: Reflections on Evidence of Efficacy. Circ Res 118:1055-8
Samanta, Anweshan; Dawn, Buddhadeb (2016) Meta-Analysis of Preclinical Data Reveals Efficacy of Cardiac Stem Cell Therapy for Heart Repair. Circ Res 118:1186-8
Samanta, Anweshan; Dawn, Buddhadeb (2016) IL-10 for cardiac autophagy modulation: New direction in the pursuit of perfection. J Mol Cell Cardiol 91:204-6
Rajasingh, Sheeja; Thangavel, Jayakumar; Czirok, Andras et al. (2015) Generation of Functional Cardiomyocytes from Efficiently Generated Human iPSCs and a Novel Method of Measuring Contractility. PLoS One 10:e0134093
Afzal, Muhammad R; Samanta, Anweshan; Shah, Zubair I et al. (2015) Adult Bone Marrow Cell Therapy for Ischemic Heart Disease: Evidence and Insights From Randomized Controlled Trials. Circ Res 117:558-75
Thangavel, Jayakumar; Samanta, Saheli; Rajasingh, Sheeja et al. (2015) Epigenetic modifiers reduce inflammation and modulate macrophage phenotype during endotoxemia-induced acute lung injury. J Cell Sci 128:3094-105
Thangavel, Jayakumar; Malik, Asrar B; Elias, Harold K et al. (2014) Combinatorial therapy with acetylation and methylation modifiers attenuates lung vascular hyperpermeability in endotoxemia-induced mouse inflammatory lung injury. Am J Pathol 184:2237-49

Showing the most recent 10 out of 11 publications