Cigarette smoke (CS) affects 1 billion people worldwide and causes 6 million premature deaths from associated diseases each year. Acute lung injury (ALI)/ acute respiratory distress syndrome (ARDS) is a life- threatening condition with 40% mortality. Emerging epidemiology studies have shown that CS predisposes lungs to infections and increases the likelihood of ALI/ ARDS. However, the mechanism of adverse effects of CS on ALI is unknown. There is an urgent need for strategies to prevent and treat ALI/ ARDS in smokers. The objectives of this application is to use human lung microvascular endothelial cells (LMVEC) and preclinical animal models to identify mechanisms by which CS impairs pulmonary endothelial barrier function and increases vulnerability to ALI after bacterial infection and to develop strategies to prevent and restore endothelial barrier function and ALI in susceptible populations. This study uses state-of-art technologies and comprehensive approaches to address a central hypothesis that CS increases endothelial cell permeability and predisposes lungs to ALI after infection by a mechanism in which oxidants from CS and mitochondria cause Akt oxidation and subsequent GSK3?-dependent activation of histone deacetylase 6 (HDAC6), this results in microtubule deacetylation, leading to translocation of dynamin-related protein (Drp)1 to mitochondria, culminating in mitochondrial fission and dysfunction and subsequent release of mitochondrial damage- associated molecular patterns (mtDAMPs).
Aim 1 : We will first determine the role of HDAC6 in CS priming for ALI after Pseudomonas aeruginosa infection by using global HDAC6 knockout mice, endothelium-specific lentiviral HDAC6 miRNA silencing in vivo, and LMVEC isolated from HDAC6 knockout mice; we will then determine the mechanism by which CS exposure leads to HDAC6 activation.
Aim 2 : We will determine the role of HDAC6 in CS-induced mitochondrial fission and dysfunction and their roles in mediating increased endothelial permeability and priming for ALI after P. aeruginosa infection. We will first characterize the effects of CS exposure on Drp1 translocation and on mitochondrial fission, fusion, function, and release of mtDNA in vitro and in vivo; we will then determine the effect of blocking HDAC6 or ?-tubulin deacetylation on the adverse effects of CS on mitochondria in vitro and in vivo; finally, we will determine the roles of mitochondrial fission, mitochondrial ROS and mtDAMPs in CS-induced increased endothelial permeability in vitro and CS priming for ALI in vivo. This study will provide innovative insights into the effect of CS on lung endothelial barrier function. Establishment of the links among HDAC6, mitochondrial fission and mtDAMPs may result in new therapeutic approaches to CS-induced vascular injury in the lung and potentially also in the systemic circulation.

Public Health Relevance

Cigarette smoke (CS) causes 6 million premature deaths each year worldwide due to CS-induced diseases. Acute lung injury (ALI)/ acute respiratory distress syndrome (ARDS) is a life-threatening condition with 40% mortality. Not all individuals exposed to clinical risk factors progress to this syndrome. CS predisposes lungs to ALI/ ARDS. The objective of this proposal is to use preclinical animal model and culture cells to gain innovative insights into the adverse effects of CS on lung endothelial barrier integrity and increased vulnerability to ALI. The long-term goal of this research is to develop novel preventive and therapeutic strategies to preserve and restore endothelial barrier integrity and to treat cigarette smoke-related acute lung injury. Thus the proposed research is directly relevant to public health and the NIH's mission.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
1R01HL130230-01A1
Application #
9175059
Study Section
Special Emphasis Panel (ZRG1-CVRS-B (03))
Program Officer
Harabin, Andrea L
Project Start
2016-07-01
Project End
2020-05-31
Budget Start
2016-07-01
Budget End
2017-05-31
Support Year
1
Fiscal Year
2016
Total Cost
$321,750
Indirect Cost
$71,750
Name
Ocean State Research Institute, Inc.
Department
Type
DUNS #
848476271
City
Providence
State
RI
Country
United States
Zip Code
02908
Chambers, Eboni; Rounds, Sharon; Lu, Qing (2018) Pulmonary Endothelial Cell Apoptosis in Emphysema and Acute Lung Injury. Adv Anat Embryol Cell Biol 228:63-86
Lu, Qing; Gottlieb, Eric; Rounds, Sharon (2018) Effects of cigarette smoke on pulmonary endothelial cells. Am J Physiol Lung Cell Mol Physiol 314:L743-L756
Sakhatskyy, Pavlo; Wang, Zhengke; Borgas, Diana et al. (2017) Double-hit mouse model of cigarette smoke priming for acute lung injury. Am J Physiol Lung Cell Mol Physiol 312:L56-L67
Vang, Alexander; Clements, Richard T; Chichger, Havovi et al. (2017) Effect of ?7 nicotinic acetylcholine receptor activation on cardiac fibroblasts: a mechanism underlying RV fibrosis associated with cigarette smoke exposure. Am J Physiol Lung Cell Mol Physiol 312:L748-L759
Lu, Qing; Mundy, Miles; Chambers, Eboni et al. (2017) Alda-1 Protects Against Acrolein-Induced Acute Lung Injury and Endothelial Barrier Dysfunction. Am J Respir Cell Mol Biol 57:662-673
Klionsky, Daniel J (see original citation for additional authors) (2016) Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 12:1-222
Yoon, Pyoung Oh; Park, Jin Wook; Lee, Chang-Min et al. (2016) Self-assembled Micelle Interfering RNA for Effective and Safe Targeting of Dysregulated Genes in Pulmonary Fibrosis. J Biol Chem 291:6433-46
Borgas, Diana; Chambers, Eboni; Newton, Julie et al. (2016) Cigarette Smoke Disrupted Lung Endothelial Barrier Integrity and Increased Susceptibility to Acute Lung Injury via Histone Deacetylase 6. Am J Respir Cell Mol Biol 54:683-96