Cardiovascular disease (CVD) represents the major cause of morbidity and mortality in patients with diabetes. Despite aggressive management of levels of lipids and glucose, both types 1 and 2 diabetic patients exhibit earlier onset and more extensive atherosclerotic lesions than non-diabetic subjects, and the response to lipid- lowering strategies is significantly less robust than the beneficial effects noted in non-diabetic subjects. Preclinical studies in diabetic animals have shown accelerated progression and impaired regression of atherosclerotic plaques, as well as increased retention of macrophages (Ms) in plaques. We will focus on diabetes-driven mechanisms linked to impaired atherosclerosis regression and the specific role of M perturbation. Our proposed studies are built on the discovery that transplantation of aortic arches from Ldlr-/- mice into diabetic mice deficient in RAGE or its cytoplasmic domain binding partner, DIAPH1, required for RAGE signaling, display significantly improved plaque regression, independent of changes in plasma glucose or lipid levels, compared to wild-type diabetic mice. Our earlier studies demonstrated that activation of RAGE is a critical component of the vessel wall response to hyperglycemia and that RAGE-driven mechanisms accounted for the observed acceleration and progression of atherosclerosis. In this application, using models of hyperglycemia and insulin resistance (IR), we will test the hypothesis that the consequences of hyperglycemia and RAGE/DIAPH1-dependent mechanisms in Ms modulate M trafficking (recruitment & retentions/stasis), M inflammatory polarization and M metabolism and oxidative stress, mechanisms which converge to suppress regression of established atherosclerotic plaques in diabetes. We will test novel pharmacological antagonists of RAGE/DIAPH1 in our murine model of diabetic atherosclerosis regression. These studies will provide novel insights into diabetes specific mechanisms that promote M accumulation and impair regression, and foster the development of novel therapeutic adjuncts for diabetic atherosclerosis.

Public Health Relevance

Cardiovascular disease (CVD) represents the major cause of morbidity and mortality in diabetic subjects and includes cardiac, macrovascular and microvascular diseases. Despite aggressive management of lipids and glucose, clinical studies have shown that both type 1 and type 2 diabetic patients exhibit earlier onset and more extensive atherosclerotic lesions than age-matched, nondiabetic populations, in parallel with impaired regression of diabetic atherosclerosis. There is a need to better understand the hyperglycemia specific mechanisms by which macrophages accumulate and impair plaque regression in diabetic atherosclerosis.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Project (R01)
Project #
5R01HL132516-04
Application #
9842564
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Olive, Michelle
Project Start
2016-12-09
Project End
2020-11-30
Budget Start
2019-12-01
Budget End
2020-11-30
Support Year
4
Fiscal Year
2020
Total Cost
Indirect Cost
Name
New York University
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
121911077
City
New York
State
NY
Country
United States
Zip Code
10016
Schmidt, Ann Marie (2018) Highlighting Diabetes Mellitus: The Epidemic Continues. Arterioscler Thromb Vasc Biol 38:e1-e8
Lee, Gloria; Plaksin, Joseph; Ramasamy, Ravichandran et al. (2018) Targeted drug discovery and development, from molecular signaling to the global market: an educational program at New York University, 5-year metrics. J Transl Sci 4:1-9
Lee, Gloria; Kranzler, Jay D; Ramasamy, Ravichandran et al. (2018) Training scientists as future industry leaders: teaching translational science from an industry executive's perspective. J Transl Sci 4: