We propose to bring together two parallel advances that provide an important new opportunity to harness animal research for understanding schizophrenia and its treatment. 1) Contemporary clinical work indicates that cognitive deficits, such as impaired cognitive control, are a core feature of schizophrenia. In fact, cognitive impairment is the clinical feature of schizophrenia that best predicts functional outcome. 2) In parallel, animal models have now been established to elucidate the physiological and molecular bases of cognition. In particular, hippocampal place-cell technology is a three decades-old standard for assessing the neurobiological mechanisms of long-term memory and cognition in rodents. We propose to investigate impaired cognitive control and its neural correlate, neural discoordination, in two established schizophrenia-related animal models, the Phencyclidine (PCP) and neonatal ventral hippocampal lesion (NVHL) models. We will use these animal models to evaluate and extend the discoordination hypothesis of schizophrenia: cognitive discoordination is the core deficit in schizophrenia. We will investigate the discoordination hypothesis in three aims. 1) Relate neural discoordination to impaired cognitive control by recording place cell ensembles as NVHL and PCP animals perform the two-frame place avoidance task. We will test whether neural discoordination is associated with impaired cognitive control in tasks that are analogous to cognitive tasks that are impaired in schizophrenia. 2) Evaluate effects of antipsychotic medications on neural discoordination and impaired cognitive control. We will test whether typical, atypical, and novel metabotropic glutamate receptor group II agonist antipsychotic compounds produce associated effects on cognition and neural coordination. 3) Develop a high-throughput assay for antipsychotic efficacy by measuring neural coordination in hippocampus and medial prefrontal cortex of anesthetized animals. Current assays of antipsychotic efficacy are based on behavioral measures (hyperactivity, prepulse inhibition) that appear more related to positive symptoms than to the cognitive core of the disease, at which the proposed studies are aimed.

Public Health Relevance

The cognitive deficits at the core of schizophrenia can be understood as alterations in the basic physiological mechanisms of temporally coordinated neuronal firing that underlies healthy cognition. We will study associated alterations of neural coordination and impaired cognition in rat models of schizophrenia to learn how firing problems of cognition-related cells could lead to the core deficits of schizophrenia.

Agency
National Institute of Health (NIH)
Institute
National Institute of Mental Health (NIMH)
Type
Research Project (R01)
Project #
5R01MH084038-04
Application #
8288811
Study Section
Special Emphasis Panel (ZRG1-PMDA-A (01))
Program Officer
Meinecke, Douglas L
Project Start
2009-07-01
Project End
2014-06-30
Budget Start
2012-07-01
Budget End
2013-06-30
Support Year
4
Fiscal Year
2012
Total Cost
$386,100
Indirect Cost
$138,600
Name
Suny Downstate Medical Center
Department
Physiology
Type
Schools of Medicine
DUNS #
040796328
City
Brooklyn
State
NY
Country
United States
Zip Code
11203
Dvorak, Dino; Shang, Andrea; Abdel-Baki, Samah et al. (2018) Cognitive Behavior Classification From Scalp EEG Signals. IEEE Trans Neural Syst Rehabil Eng 26:729-739
O'Reilly, Kally C; Levy, Eliott R J; Patino, Alejandra V et al. (2018) Sub-circuit alterations in dorsal hippocampus structure and function after global neurodevelopmental insult. Brain Struct Funct 223:3543-3556
Pavlowsky, Alice; Wallace, Emma; Fenton, André A et al. (2017) Persistent modifications of hippocampal synaptic function during remote spatial memory. Neurobiol Learn Mem 138:182-197
Neymotin, Samuel A; Talbot, Zoe N; Jung, Jeeyune Q et al. (2017) Tracking recurrence of correlation structure in neuronal recordings. J Neurosci Methods 275:1-9
Kao, Hsin-Yi; Dvo?ák, Dino; Park, EunHye et al. (2017) Phencyclidine Discoordinates Hippocampal Network Activity But Not Place Fields. J Neurosci 37:12031-12049
Kelemen, Eduard; Fenton, André A (2016) Coordinating different representations in the hippocampus. Neurobiol Learn Mem 129:50-9
Tsokas, Panayiotis; Hsieh, Changchi; Yao, Yudong et al. (2016) Compensation for PKM? in long-term potentiation and spatial long-term memory in mutant mice. Elife 5:
Fenton, André A (2015) Excitation-inhibition discoordination in rodent models of mental disorders. Biol Psychiatry 77:1079-88
Park, Eun Hye; Burghardt, Nesha S; Dvorak, Dino et al. (2015) Experience-Dependent Regulation of Dentate Gyrus Excitability by Adult-Born Granule Cells. J Neurosci 35:11656-66
Dvorak, Dino; Fenton, André A (2014) Toward a proper estimation of phase-amplitude coupling in neural oscillations. J Neurosci Methods 225:42-56

Showing the most recent 10 out of 22 publications