In this competing renewal, we propose to continue collaborative studies between the Zlokovic and the Holtzman labs aimed at understanding cellular and molecular mechanisms underlying apolipoprotein E (apoE) effects on the cerebrovascular system, particularly on the blood-brain barrier (BBB), and how these effects contribute to development of neuronal dysfunction and neurodegeneration. Our focus is on apoE/low density lipoprotein receptor related protein-1 (LRP1) interactions in brain capillary endothelium and pericytes that form the BBB in vivo. We propose to study isoform-specific differences in apoE/LRP1 interactions and consequences between apoE4, which is a major genetic risk factor for Alzheimer's disease (AD), and apoE3, which carries a significantly lower risk for AD. Within the neurovascular unit, apoE is produced mainly by astrocytes which allow direct binding, uptake, and signal transduction of astrocyte-derived apoE with cell surface LRP1 expressed in the neighboring pericytes and endothelial cells. LRP1 is a key apoE receptor and an important Alzheimer's amyloid b-peptide (Ab) clearance receptor. Recent studies have suggested that apoE/LRP1 signal transduction in pericytes is important for cerebrovascular integrity. In AD and AD models, LRP1 expression in brain microvessels that form the BBB is significantly reduced. Whether reduced LRP1 expression at the BBB and the resulting diminished apoE-Ab and apoE interactions with LRP1 can initiate Ab, cerebrovascular and neurodegenerative disorders remains, however, unknown. To address these questions we will use new mouse lines with partial or complete LRP1 deletion from endothelium or pericytes generated from conditional Lrp1 mice (Lrp1lox/lox) and crossed with i) 5xFAD (PS/APP);TRE mice with targeted replacement of human apoE gene (TRE) to study Ab-dependent effects, or ii) TRE mice alone to study Ab- independent effects. We will use state-of the art methods to study Ab metabolism, optical imaging methods to study BBB and neurovascular functions ex vivo and in vivo, behavioral tests and methods to study neuronal function and structure. We will determine the effects of LRP1 partial and complete deletion from endothelium and pericytes on Ab pathology, vascular and neurodegenerative changes in aging 5xFAD;TRE3 mice (AIM 1) and 5xFAD;TRE4 mice (AIM 2), and on BBB integrity and neuronal function and structure independently of Ab in aging TRE3 mice (AIM 3) and TRE4 mice (AIM 4). The proposed studies will investigate for the first time the role of diminished LRP1 expression at the BBB, particularly in pericytes and endothelial cells, on apoE isoform- specific effects on disease onset and progression including effects on Ab metabolism and pathology, BBB integrity and neuronal dysfunction and degeneration. We expect that these new findings will establish LRP1 and its Ab-dependent and Ab-independent interactions with apoE in brain endothelium and pericytes as major new therapeutic targets for AD-associated Ab, cerebrovascular and neurodegenerative disorders.

Public Health Relevance

The annual health care costs for neurodegenerative disorders range in excess of a hundred billion dollars. Sadly, we do not have cure yet for any of these diseases. Understanding cellular and molecular mechanisms underlying effects of apolipoprotein E (apoE) on the cerebrovascular system and how these effects may contribute to development of neuronal dysfunction and neurodegeneration will have profound implications for our understanding of Alzheimer's disease pathogenesis and may ultimately guide the development of new therapeutic approaches for this devastating brain disorder.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
5R01NS034467-18
Application #
9033153
Study Section
Cell Death in Neurodegeneration Study Section (CDIN)
Program Officer
Corriveau, Roderick A
Project Start
1995-09-01
Project End
2019-03-31
Budget Start
2016-04-01
Budget End
2017-03-31
Support Year
18
Fiscal Year
2016
Total Cost
Indirect Cost
Name
University of Southern California
Department
Physiology
Type
Schools of Medicine
DUNS #
072933393
City
Los Angeles
State
CA
Country
United States
Zip Code
90032
Shi, Yingxiao; Lin, Shaoyu; Staats, Kim A et al. (2018) Haploinsufficiency leads to neurodegeneration in C9ORF72 ALS/FTD human induced motor neurons. Nat Med 24:313-325
Sweeney, Melanie D; Kisler, Kassandra; Montagne, Axel et al. (2018) The role of brain vasculature in neurodegenerative disorders. Nat Neurosci 21:1318-1331
Montagne, Axel; Nikolakopoulou, Angeliki M; Zhao, Zhen et al. (2018) Pericyte degeneration causes white matter dysfunction in the mouse central nervous system. Nat Med 24:326-337
Sweeney, Melanie D; Zlokovic, Berislav V (2018) A lymphatic waste-disposal system implicated in Alzheimer's disease. Nature 560:172-174
Sweeney, Melanie D; Sagare, Abhay P; Zlokovic, Berislav V (2018) Blood-brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat Rev Neurol 14:133-150
Kisler, Kassandra; Nelson, Amy R; Montagne, Axel et al. (2017) Cerebral blood flow regulation and neurovascular dysfunction in Alzheimer disease. Nat Rev Neurosci 18:419-434
Huynh, Tien-Phat V; Liao, Fan; Francis, Caroline M et al. (2017) Age-Dependent Effects of apoE Reduction Using Antisense Oligonucleotides in a Model of ?-amyloidosis. Neuron 96:1013-1023.e4
Nelson, Amy R; Sagare, Abhay P; Zlokovic, Berislav V (2017) Role of clusterin in the brain vascular clearance of amyloid-?. Proc Natl Acad Sci U S A 114:8681-8682
Kisler, Kassandra; Nelson, Amy R; Rege, Sanket V et al. (2017) Pericyte degeneration leads to neurovascular uncoupling and limits oxygen supply to brain. Nat Neurosci 20:406-416
Nikolakopoulou, Angeliki Maria; Zhao, Zhen; Montagne, Axel et al. (2017) Regional early and progressive loss of brain pericytes but not vascular smooth muscle cells in adult mice with disrupted platelet-derived growth factor receptor-? signaling. PLoS One 12:e0176225

Showing the most recent 10 out of 76 publications