Despite significant progress in stroke prevention and its acute treatment, stroke remains the third leading cause of death and the leading cause of adult morbidity worldwide. Fundamental advances in stroke will require collecting and pooling advanced phenotype (e.g., neuroimaging) and genetic data from multiple centers. Description of and access to the data will also require a common stroke-specific lexicon. We have therefore initiated efforts to promote sharing and distribution of imaging and genetic data, and, and a lexicographic categorization tool, Using these portals, data and tools are available to individual research groups. We seek to expand our ability to distribute data and tools by linking our efforts to the infrastructure provided by the Biomedical Informatics Research Network (BIRN). We will initially distribute data using the BIRN service, Extensible Neuroimaging Archive Toolkit (XNAT) Central, to insure our data compatibility with the BIRN Data Repository (BDR). We will then work with BIRN domain experts to begin to incorporate stroke data specific terms into the BIRN ontology to ensure successful port and distribution of our data using the BDR. Linking our existing portals with BIRN resources has the potential to greatly facilitate data sharing which will benefit the understanding of stroke and speed discovery of new therapeutic interventions.

Public Health Relevance

Stroke remains the third leading cause of death and the leading cause of adult morbidity in the world despite marked progress in its prevention and acute treatment. Key to improving understanding stroke pathogenesis that can lead ultimately to greater treatment options is pooling of stroke patient data and computational resources. We propose sharing our human stroke neuroimaging, clinical and genetic information as well as data analysis programs using the Biomedical Informatics Research Network infrastructure.

National Institute of Health (NIH)
National Institute of Neurological Disorders and Stroke (NINDS)
Research Project (R01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-BST-G (50))
Program Officer
Liu, Yuan
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Massachusetts General Hospital
United States
Zip Code
Rost, Natalia S; Cougo, Pedro; Lorenzano, Svetlana et al. (2018) Diffuse microvascular dysfunction and loss of white matter integrity predict poor outcomes in patients with acute ischemic stroke. J Cereb Blood Flow Metab 38:75-86
Lorenzano, Svetlana; Rost, Natalia S; Khan, Muhib et al. (2018) Oxidative Stress Biomarkers of Brain Damage: Hyperacute Plasma F2-Isoprostane Predicts Infarct Growth in Stroke. Stroke 49:630-637
(2017) 19th Workshop of the International Stroke Genetics Consortium, April 28-29, 2016, Boston, Massachusetts, USA: 2016.001 MRI-defined cerebrovascular genomics-The CHARGE consortium. Neurol Genet 3:S2-S11
Biffi, Alessandro; Rattani, Abbas; Anderson, Christopher D et al. (2016) Delayed seizures after intracerebral haemorrhage. Brain 139:2694-2705
Biffi, Alessandro; Bailey, Destiny; Anderson, Christopher D et al. (2016) Risk Factors Associated With Early vs Delayed Dementia After Intracerebral Hemorrhage. JAMA Neurol 73:969-76
Bouts, Mark J R J; Westmoreland, Susan V; de Crespigny, Alex J et al. (2015) Magnetic resonance imaging-based cerebral tissue classification reveals distinct spatiotemporal patterns of changes after stroke in non-human primates. BMC Neurosci 16:91
Biffi, Alessandro; Anderson, Christopher D; Battey, Thomas W K et al. (2015) Association Between Blood Pressure Control and Risk of Recurrent Intracerebral Hemorrhage. JAMA 314:904-12
Raffeld, Miriam R; Biffi, Alessandro; Battey, Thomas W K et al. (2015) APOE ?4 and lipid levels affect risk of recurrent nonlobar intracerebral hemorrhage. Neurology 85:349-56
Copen, W A; Deipolyi, A R; Schaefer, P W et al. (2015) Exposing hidden truncation-related errors in acute stroke perfusion imaging. AJNR Am J Neuroradiol 36:638-45
Zhang, Cathy R; Cloonan, Lisa; Fitzpatrick, Kaitlin M et al. (2015) Determinants of white matter hyperintensity burden differ at the extremes of ages of ischemic stroke onset. J Stroke Cerebrovasc Dis 24:649-54

Showing the most recent 10 out of 29 publications