The adult brain has a remarkable capacity to recover from focal ischemic stroke (FIS). Astrocytes are the most numerous and diverse glial cells in CNS and intimately interact with neurons to support and regulate their functions. After FIS, astrocytes in the PIR exhibit dynamic changes in morphology, proliferation and gene expression especially in the peri-infarct region (PIR). These astrocytes are called reactive astrocytes (RAs). However, whether and how reactive astrocytes (RAs) affect brain recovery after FIS in the context of astrocyte?neuron interactions largely remain unexplored. In our preliminary study, we found GDNF, a potent neurotrophic factor, is dramatically upregulated in the ischemic hemisphere and RAs after photothrombosis (PT)-induced FIS. Furthermore, we found that deletion of astrocytic GDNF reduces adult neurogenesis in normal brain, and increases brain infarction and attenuates cell proliferation in the PIR after PT. Based on these strong preliminary results, we hypothesize that RAs-derived GDNF plays an important role in neural regeneration and functional brain recovery after FIS. The prohect goal is to determine whether and how RAs- derived GDNF stimulates synaptic regeneration and remodeling of surviving neurons in the PIR and improves long-term stroke outcomes after FIS. To achieve this goal, we have developed interdisciplinary technologies including self-complementary adeno-associated virus (scAAV) vectors and Glast-CreERT2:GDNFf/f mice to specifically overexpress or delete GDNF in RAs during post FIS time, in vivo two photon (2-P) long-term microscopy, electrophysiology, immunocytochemistry, Western blot (WB) analysis, brain damage and neuronal death assays and behavioral tests. We propose three specific aims.
In Aim 1, we will test the hypothesis that RAs-derived GDNF can enhance synaptogenesis to stimulate neural regeneration in the PIR after FIS. We will determine the effects of RAs-derived GDNF on the expression of neuronal proteins involving synaptic function and plasticity in the PIR; using TRAP (translating ribosome affinity purification) method we will further identify neuronal transcript changes at translational status in the PIR.
In Aim 2, we will test the hypothesis that RAs- derived GDNF can promote structural and functional synaptic remodeling of surviving neurons in the PIR after FIS. Using in vivo long-term 2-P imaging we will determine the effect of RAs-derived GDNF on spine turnover (i.e., spine formation and elimination), glutamate release and Ca2+ signaling in the same dendrites of surviving neurons in the PIR. We will conduct patch-clamp recording on surviving neurons in the PIR to determine the effect of RAs-derived GDNF on functional synaptic plasticity.
In Aim 3, we will test the hypothesis that astrocytic GDNF can improve long-term stroke outcomes. We will evaluate the effect of RAs-derived GDNF on long-term histological and behavioral outcomes. Our project will provide novel molecular, cellular and functional insights into the brain recovery processes after FIS in the context of glia-neuron interactions, reveal potential strategies for stroke therapy, and thus has both scientific and translational significances.

Public Health Relevance

Focal ischemic stroke (FIS) is a leading cause of human disability and death with limited treatment strategies. The proposed project will investigate the role and mechanism of glial cell line-derived neurotrophic factor (GDNF) in neural regeneration and long-term stroke outcomes following FIS using a mouse model. The results from this project will provide novel mechanistic insights into brain recovery and potential therapeutic strategy for brain repair after FIS.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
5R01NS069726-08
Application #
9976583
Study Section
Cellular and Molecular Biology of Glia Study Section (CMBG)
Program Officer
Bosetti, Francesca
Project Start
2010-05-15
Project End
2023-07-31
Budget Start
2020-08-01
Budget End
2021-07-31
Support Year
8
Fiscal Year
2020
Total Cost
Indirect Cost
Name
University of Missouri-Columbia
Department
Type
Organized Research Units
DUNS #
153890272
City
Columbia
State
MO
Country
United States
Zip Code
65211
Zhang, Nannan; Ding, Shinghua (2018) Imaging of Mitochondrial and Cytosolic Ca2+ Signals in Cultured Astrocytes. Curr Protoc Neurosci 82:2.29.1-2.29.11
Wang, Xiaowan; Zhang, Qiao; Bao, Ruisi et al. (2017) Deletion of Nampt in Projection Neurons of Adult Mice Leads to Motor Dysfunction, Neurodegeneration, and Death. Cell Rep 20:2184-2200
Wang, Xiaowan; Li, Hailong; Ding, Shinghua (2016) Pre-B-cell colony-enhancing factor protects against apoptotic neuronal death and mitochondrial damage in ischemia. Sci Rep 6:32416
Choudhury, Gourav Roy; Ding, Shinghua (2016) Reactive astrocytes and therapeutic potential in focal ischemic stroke. Neurobiol Dis 85:234-244
Wang, Xiaowan; Ding, Shinghua (2016) Pre-B-cell colony-enhancing factor as a target for protecting against apoptotic neuronal death and mitochondrial damage in ischemia. Neural Regen Res 11:1914-1915
Li, Hailong; Xie, Yicheng; Zhang, Nannan et al. (2015) Disruption of IP?R2-mediated Ca²? signaling pathway in astrocytes ameliorates neuronal death and brain damage while reducing behavioral deficits after focal ischemic stroke. Cell Calcium 58:565-76
Li, Hailong; Roy Choudhury, Gourav; Zhang, Nannan et al. (2015) Photothrombosis-induced Focal Ischemia as a Model of Spinal Cord Injury in Mice. J Vis Exp :e53161
Ding, Shinghua (2014) Ca(2+) signaling in astrocytes and its role in ischemic stroke. Adv Neurobiol 11:189-211
Wang, Xiaowan; Li, Hailong; Ding, Shinghua (2014) The effects of NAD+ on apoptotic neuronal death and mitochondrial biogenesis and function after glutamate excitotoxicity. Int J Mol Sci 15:20449-68
Li, Hailong; Wang, Xiaowan; Zhang, Nannan et al. (2014) Imaging of mitochondrial Ca2+ dynamics in astrocytes using cell-specific mitochondria-targeted GCaMP5G/6s: mitochondrial Ca2+ uptake and cytosolic Ca2+ availability via the endoplasmic reticulum store. Cell Calcium 56:457-66

Showing the most recent 10 out of 16 publications