Glioblastoma multiformes (GBMs) are primary brain tumors displaying invasive growth properties that are tightly coupled to the vasculature. For example, stem-like GBM cells preferentially cluster in perivascular niches and invasive GBM cells often disperse throughout the brain via vascular basement membranes. Furthermore, anti-angiogenesis therapies administered to patients with GBM often lead to enhanced tumor cell infiltration and the formation of lethal satellite lesions. The molecular mechanisms that couple GBM cells to cerebral blood vessels during tumor progression and following anti-angiogenesis therapies remain largely unknown. In this project we will investigate how GBM cells exploit a specific cell adhesion and signaling axis comprised of ?v?8 integrin, its latent TGF? extracellular matrix (ECM) protein ligands, and TGF? receptors to selectively promote perivascular growth and dispersal in the brain. We have discovered that ?v?8 integrin is expressed in invasive GBM cells where it mediates activation of TGF?s to drive cell polarity and directional migration. In addition, ?v?8 integrin protein is highly expressed in invasive GBM cells following anti-angiogenesis treatments. Based on these data we hypothesize that ?v?8 integrin regulates adhesion and signaling pathways that promote GBM cell invasion during tumor progression and following anti-vascular therapies. Furthermore, we hypothesize that inhibiting components of these pathways will diminish GBM cell infiltration. To test our hypotheses we have developed a unique set of experimental tools to (1) characterize how ?v?8 integrin interacts with the VEGF-A receptor Neuropilin-1 to promote GBM cell infiltration; (2) investigate how integrin-activated TGF?s cooperate with VEGF-A to drive GBM cell invasiveness; and (3) selectively inhibit components of these pathways to block invasiveness in pre-clinical mouse models of GBM. Collectively, these experiments will not only elucidate novel links between ?v?8 integrin-activated TGF?s and VEGF-A receptors in GBM cells, but may eventually lead to new therapeutic strategies for inhibiting cell invasion during tumor progression and following anti-vascular therapies.

Public Health Relevance

Glioblastomas are incurable brain tumors with highly invasive growth properties. In this project we will characterize how adhesion proteins known as integrins and their extracellular matrix ligands drive glioblastoma invasive growth. Characterizing these pathways will be an important first step toward designing new therapies to target invasive cells.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
4R01NS078402-05
Application #
9109068
Study Section
Tumor Microenvironment Study Section (TME)
Program Officer
Fountain, Jane W
Project Start
2012-09-15
Project End
2017-05-31
Budget Start
2016-06-01
Budget End
2017-05-31
Support Year
5
Fiscal Year
2016
Total Cost
Indirect Cost
Name
University of Texas MD Anderson Cancer Center
Department
Biology
Type
Hospitals
DUNS #
800772139
City
Houston
State
TX
Country
United States
Zip Code
77030
Chen, Zhihua; Morales, John E; Guerrero, Paola A et al. (2018) PTPN12/PTP-PEST Regulates Phosphorylation-Dependent Ubiquitination and Stability of Focal Adhesion Substrates in Invasive Glioblastoma Cells. Cancer Res 78:3809-3822
Tiwary, Shweta; Morales, John E; Kwiatkowski, Sam C et al. (2018) Metastatic Brain Tumors Disrupt the Blood-Brain Barrier and Alter Lipid Metabolism by Inhibiting Expression of the Endothelial Cell Fatty Acid Transporter Mfsd2a. Sci Rep 8:8267
Guerrero, P A; Tchaicha, J H; Chen, Z et al. (2017) Glioblastoma stem cells exploit the ?v?8 integrin-TGF?1 signaling axis to drive tumor initiation and progression. Oncogene 36:6568-6580
Toutounchian, Jordan J; McCarty, Joseph H (2017) Selective expression of eGFP in mouse perivascular astrocytes by modification of the Mlc1 gene using T2A-based ribosome skipping. Genesis 55:
Cheerathodi, Mujeeburahiman; Avci, Naze G; Guerrero, Paola A et al. (2016) The Cytoskeletal Adapter Protein Spinophilin Regulates Invadopodia Dynamics and Tumor Cell Invasion in Glioblastoma. Mol Cancer Res 14:1277-1287
Savar, A; Acin, S; Gonzalez, C L et al. (2015) Loss of epithelial p53 and ?v integrin cooperate through Akt to induce squamous cell carcinoma yet prevent remodeling of the tumor microenvironment. Oncogene 34:516-24
Zhang, Lin; Zhang, Siyuan; Yao, Jun et al. (2015) Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth. Nature 527:100-104
Lee, Hye Shin; Cheerathodi, Mujeeburahiman; Chaki, Sankar P et al. (2015) Protein tyrosine phosphatase-PEST and ?8 integrin regulate spatiotemporal patterns of RhoGDI1 activation in migrating cells. Mol Cell Biol 35:1401-13
Hirota, Shinya; Clements, Thomas P; Tang, Leung K et al. (2015) Neuropilin 1 balances ?8 integrin-activated TGF? signaling to control sprouting angiogenesis in the brain. Development 142:4363-73
Lee, Hye Shin; McCarty, Joseph H (2014) Inducible gene deletion in glial cells to study angiogenesis in the central nervous system. Methods Mol Biol 1135:261-74

Showing the most recent 10 out of 13 publications