The overall aim of this work is to assess the relationship between stroke risk and hemodynamic compensation strategies, as measured using a novel 3.0 Tesla MRI protocol, in patients with symptomatic intracranial (IC) steno-occlusive disease. Recent studies have shown high two-year ischemic stroke rates in symptomatic patients with IC arterial stenosis. Therapy for IC stenosis patients includes revascularization with angioplasty, IC stenting, or bypass, however identification of patients most likely to benefit from these more aggressive interventions, rather than medical management alone, has been problematic. Accurate measurements of hemodynamic compromise are likely required to better define stroke risk and guide treatment decisions. Specifically, in IC stenosis patients with compromised cerebral perfusion pressure (CPP), the extent of hemodynamic compromise reflects the autoregulatory capacity of vasculature to increase arterial cerebral blood volume (aCBV) and/or develop collaterals to supplement cerebral blood flow (CBF). The prevalence of CBF collateralization and aCBV autoregulation has been hypothesized to correlate uniquely with stroke risk;however the extent of this correlation has been debated. The critical barrier to stratifying stroke risk rests with a lack of i) methodology for measuring multiple hemodynamic factors with high specificity and (ii) noninvasive approaches capable of monitoring longitudinal progression of impairment. We have demonstrated the clinical utility of relatively new, noninvasive MRI approaches for assessing cerebrovascular reactivity (CVR), aCBV, and collateral CBF. We hypothesize that stroke risk can be more completely evinced from collective measurements of these parameters. Therefore, we propose to implement a novel, validated hemodynamic MRI protocol to assess tissue-level impairment and compensation strategies in patients with IC stenosis. Using a collective approach combining measurements of collateral CBF, aCBV and CVR in multiple brain regions, in conjunction with a statistical model incorporating the above variables as possible prognostic factors, we will quantify the extent to which two-year stroke risk is associated with hemodynamic compensation mechanisms. The noninvasive and multi-faceted scope of this investigation is intended to expand the diagnostic stroke infrastructure and elucidate new hemodynamic prognostic indicators of stroke in this high-risk population.

Public Health Relevance

Recent studies have shown high stroke rates in patients with intracranial arterial stenosis, however conflicting reports regarding how best to manage these patients. To better understand stroke risk in these patients, we propose to apply novel, noninvasive magnetic resonance imaging approaches to obtain a more comprehensive measure of tissue viability and the prevalence of vascular compensation strategies in this at-risk population. Results from this study are anticipated to provide new information regarding the mechanisms by which the brain compensates for arterial stenosis and to describe the relationship between these mechanisms and stroke risk with the overreaching aims of reducing stroke and long-term disability.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
5R01NS078828-02
Application #
8490661
Study Section
Special Emphasis Panel (ZRG1-DTCS-U (81))
Program Officer
Janis, Scott
Project Start
2012-06-01
Project End
2017-04-30
Budget Start
2013-05-01
Budget End
2014-04-30
Support Year
2
Fiscal Year
2013
Total Cost
$309,801
Indirect Cost
$98,707
Name
Vanderbilt University Medical Center
Department
Radiation-Diagnostic/Oncology
Type
Schools of Medicine
DUNS #
004413456
City
Nashville
State
TN
Country
United States
Zip Code
37212
Lants, Sarah K; Watchmaker, Jennifer M; Juttukonda, Meher R et al. (2018) Treatment of Progressive Herpes Zoster-Induced Vasculopathy with Surgical Revascularization: Effects on Cerebral Hemodynamics. World Neurosurg 111:132-138
Juttukonda, Meher R; Donahue, Manus J (2017) Neuroimaging of vascular reserve in patients with cerebrovascular diseases. Neuroimage :
Donahue, Manus J; Juttukonda, Meher R; Watchmaker, Jennifer M (2017) Noise concerns and post-processing procedures in cerebral blood flow (CBF) and cerebral blood volume (CBV) functional magnetic resonance imaging. Neuroimage 154:43-58
Cogswell, Petrice M; Davis, Taylor L; Strother, Megan K et al. (2017) Impact of vessel wall lesions and vascular stenoses on cerebrovascular reactivity in patients with intracranial stenotic disease. J Magn Reson Imaging 46:1167-1176
Ladner, Travis R; Donahue, Manus J; Arteaga, Daniel F et al. (2017) Prior Infarcts, Reactivity, and Angiography in Moyamoya Disease (PIRAMD): a scoring system for moyamoya severity based on multimodal hemodynamic imaging. J Neurosurg 126:495-503
Mason, Emily J; Hussey, Erin P; Molitor, Robert J et al. (2017) Family History of Alzheimer's Disease is Associated with Impaired Perceptual Discrimination of Novel Objects. J Alzheimers Dis 57:735-745
Juttukonda, Meher R; Donahue, Manus J; Davis, Larry T et al. (2017) Preliminary evidence for cerebral capillary shunting in adults with sickle cell anemia. J Cereb Blood Flow Metab :271678X17746808
Juttukonda, Meher R; Jordan, Lori C; Gindville, Melissa C et al. (2017) Cerebral hemodynamics and pseudo-continuous arterial spin labeling considerations in adults with sickle cell anemia. NMR Biomed 30:
Strother, Megan K; Buckingham, Cari; Faraco, Carlos C et al. (2016) Crossed cerebellar diaschisis after stroke identified noninvasively with cerebral blood flow-weighted arterial spin labeling MRI. Eur J Radiol 85:136-142
Jordan, Lori C; Gindville, Melissa C; Scott, Allison O et al. (2016) Non-invasive imaging of oxygen extraction fraction in adults with sickle cell anaemia. Brain 139:738-50

Showing the most recent 10 out of 34 publications