Disruption of axonal transport is thought to occur early in the course of many neurological diseases including peripheral neuropathies and neurodegenerative diseases. Proposed mechanisms whereby transport defects lead to disease include impairment of organelle delivery to distal axons, defective retrograde neurotrophic signaling, and disruption of the synaptic vesicle cycle within the synaptic terminal. However, the way alterations in axonal transport cause disease is unclear. Simple model organisms such as the fruitfly, Drosophila melanogaster, allow genetic manipulations to be combined with analysis of axonal transport and synaptic physiology, and they are providing insights into the pathophysiology of peripheral nerve and neurodegenerative diseases. The long-term goal of this proposal is to understand how intracellular trafficking events are altered in neurological diseases in order to identify novel targets for therapeutic development. Retrograde axonal transport is mediated by the dynein/dynactin protein complex. The p150Glued dynactin subunit is mutated in two distinct, non-overlapping autosomal dominant neurodegenerative diseases: one that causes a motor neuron disease called Hereditary Motor Neuropathy type 7B (HMN7B), and the other that is called Perry Syndrome, characterized by parkinsonism, depression, hypoventilation, and weight loss. The HMN7B and Perry mutations are as close as 12 residues apart within the p150Glued CAP-Gly microtubule (MT)-binding domain. Our Preliminary Results suggest that these mutations differentially affect p150 interactions with MTs and p150 function at synapses. Furthermore, we find that HMN7B mutations disrupt the initiation of retrograde MT-mediated transport at the distal-most end of synapses (called terminal boutons) and block neurotransmitter release at the neuromuscular junction (NMJ).
In Aim 1, we will determine if HMN7B and Perry Syndrome mutations disrupt distinct protein interactions with p150 binding partners and also whether they cause defects in axonal transport or retrograde signaling.
In Aim 2, we will study the initiation of retrograde transport at NMJ TBs to determine if initiation occur when dynamic MT plus-ends capture vesicles through interactions between p150 and end binding protein-1 (EB1), a """"""""master regulator of MT plus-ends"""""""". We will also test the hypothesis that HMN7B but not Perry mutations in p150 disrupt retrograde initiation at TBs, and determine if this defect is due to an alteration in microtubule dynamics at TBs.
In Aim3, we will investigate how mutations in p150 alter synaptic transmission by combining calcium and FM1-43 imaging, ultrastructural analysis and electrophysiology. Together these studies will help elucidate the function of the p150 CAP-Gly domain in neurons, and hold promise for shedding light on the mechanisms of cell-type specificity of neurodegenerative disease.

Public Health Relevance

Blockage of transport along neuronal processes and at synapses occurs in neurodegenerative diseases and peripheral neuropathies, but the way that altered trafficking causes disease is unclear. This study will investigate a key regulator of neuronal intracellular transport that is mutated in two different neurodegenerative diseases to find out how altered interactions with other proteins and the cytoskeleton disrupt neuronal function.

National Institute of Health (NIH)
National Institute of Neurological Disorders and Stroke (NINDS)
Research Project (R01)
Project #
Application #
Study Section
Synapses, Cytoskeleton and Trafficking Study Section (SYN)
Program Officer
Gubitz, Amelie
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Johns Hopkins University
Schools of Medicine
United States
Zip Code
Zhang, Ke; Daigle, J Gavin; Cunningham, Kathleen M et al. (2018) Stress Granule Assembly Disrupts Nucleocytoplasmic Transport. Cell 173:958-971.e17
Amici, David R; Pinal-Fernandez, Iago; Mázala, Davi A G et al. (2017) Calcium dysregulation, functional calpainopathy, and endoplasmic reticulum stress in sporadic inclusion body myositis. Acta Neuropathol Commun 5:24
Jeong, Yun Ha; Ling, Jonathan P; Lin, Sophie Z et al. (2017) Tdp-43 cryptic exons are highly variable between cell types. Mol Neurodegener 12:13
Güttsches, Anne-Katrin; Brady, Stefen; Krause, Kathryn et al. (2017) Proteomics of rimmed vacuoles define new risk allele in inclusion body myositis. Ann Neurol 81:227-239
Lloyd, Thomas E; Christopher-Stine, Lisa; Pinal-Fernandez, Iago et al. (2016) Cytosolic 5'-Nucleotidase 1A As a Target of Circulating Autoantibodies in Autoimmune Diseases. Arthritis Care Res (Hoboken) 68:66-71
Bharadwaj, Rajnish; Cunningham, Kathleen M; Zhang, Ke et al. (2016) FIG4 regulates lysosome membrane homeostasis independent of phosphatase function. Hum Mol Genet 25:681-92
Wu, Mark N; Lloyd, Thomas E (2015) Drosophila models of neurologic disease. Exp Neurol 274:1-3
Sanmaneechai, Oranee; Feely, Shawna; Scherer, Steven S et al. (2015) Genotype-phenotype characteristics and baseline natural history of heritable neuropathies caused by mutations in the MPZ gene. Brain 138:3180-92
Paik, Julie J; Wigley, Fredrick M; Lloyd, Thomas E et al. (2015) Spectrum of Muscle Histopathologic Findings in Forty-Two Scleroderma Patients With Weakness. Arthritis Care Res (Hoboken) 67:1416-25
Zhang, Ke; Donnelly, Christopher J; Haeusler, Aaron R et al. (2015) The C9orf72 repeat expansion disrupts nucleocytoplasmic transport. Nature 525:56-61

Showing the most recent 10 out of 19 publications