Memory deficits are found with many neurological disorders and the breakdown of interactions between memory systems can be particularly debilitating. Different memory systems typically combine and interact to influence everyday behavior. The amygdala and cerebellum have traditionally been viewed as essential players in different types of memory, emotional and motor memory, respectively. These memory systems have been viewed as largely independent. However, recent evidence suggests that the amygdala facilitates cerebellar learning. Our preliminary data indicate that reversible inactivatio of the amygdala in rats severely impairs acquisition and retention of eyeblink conditioning, a type of cerebellar learning. Moreover, amygdala inactivation reversibly impairs the development of learning-related neuronal activity in the cerebellum. This proposal is designed to elucidate the mechanisms underlying interactions between the amygdala and cerebellum.
Aim 1 is to determine how the amygdala influences cerebellar function during eyeblink conditioning using reversible inactivation of the amygdala and multi-electrode neuronal recording in the cerebellum.
Aim 2 is to determine whether or not the amygdala interacts with the cerebellum through the conditioned stimulus input pathway to the cerebellum using reversible inactivation of the amygdala, axonal tracing, electrical brain stimulation, and multi-electrode neuronal recording.
Aim 3 is to determine whether or not amygdala memory consolidation is necessary for facilitating cerebellar learning using protein synthesis inhibition and NMDA receptor blockade in the amygdala and multi-electrode neuronal recording in the pontine nucleus. This project would provide an unprecedented analysis of amygdala-cerebellum interactions.

Public Health Relevance

Memory deficits are found with many neurological disorders such as Alzheimer's disease and following stroke; the breakdown of interactions between memory systems can be particularly debilitating. This proposal examines the neural mechanisms underlying interactions between emotional and motor memory systems during associative learning. Elucidating the neural mechanisms underlying memory system interactions is potentially important for developing treatments for memory deficits.

National Institute of Health (NIH)
National Institute of Neurological Disorders and Stroke (NINDS)
Research Project (R01)
Project #
Application #
Study Section
Neurobiology of Learning and Memory Study Section (LAM)
Program Officer
Babcock, Debra J
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Iowa
Schools of Arts and Sciences
Iowa City
United States
Zip Code
Steinmetz, Adam B; Freeman, John H (2018) Cannabinoid agonist administration within the cerebellar cortex impairs motor learning. Neurobiol Learn Mem :
Farley, Sean J; Albazboz, Heba; De Corte, Benjamin J et al. (2018) Amygdala central nucleus modulation of cerebellar learning with a visual conditioned stimulus. Neurobiol Learn Mem 150:84-92
Wahlstrom, Krista L; Huff, Mary L; Emmons, Eric B et al. (2018) Basolateral Amygdala Inputs to the Medial Entorhinal Cortex Selectively Modulate the Consolidation of Spatial and Contextual Learning. J Neurosci 38:2698-2712
Steinmetz, Adam B; Ng, Ka H; Freeman, John H (2017) Memory consolidation within the central amygdala is not necessary for modulation of cerebellar learning. Learn Mem 24:225-230
Farley, Sean J; Radley, Jason J; Freeman, John H (2016) Amygdala Modulation of Cerebellar Learning. J Neurosci 36:2190-201
Steinmetz, Adam B; Freeman, John H (2016) Cannabinoid modulation of memory consolidation within the cerebellum. Neurobiol Learn Mem 136:228-235
Kim, Jangjin; Wasserman, Edward A; Castro, Leyre et al. (2016) Anterior cingulate cortex inactivation impairs rodent visual selective attention and prospective memory. Behav Neurosci 130:75-90
Campolattaro, Matthew M; Buss, Eric W; Freeman, John H (2015) Cross-modal savings in the contralateral eyelid conditioned response. Behav Neurosci 129:683-91
Freeman, John H (2015) Cerebellar learning mechanisms. Brain Res 1621:260-9