Extension and maturation of axons and dendrites are essential developmental steps that allow the nervous system to function. This development requires precise regulation of gene expression, with coordinated activation and inactivation of gene expression programs associated with growth, maturation, and function of neurons. Growth of neuronal processes or `neurites' must be precisely timed and regulated to generate functional neural circuits. Regulation of gene expression extends beyond transcribing DNA into mRNAs, and it has become increasingly clear that much regulation occurs post-transcriptionally in neurons. Regulatory steps include splicing, subcellular localization, and translational control of mRNAs. Stability of mRNAs plays a critical role in gene expression by modifying the amount of an individual mRNA available as a template for generating new protein over time. Stabilization and destabilization of mRNAs within growing neurites also impacts where new proteins are produced. Despite increased recognition of importance of this mechanism, we have little understanding of how neuronal mRNA stability is regulated. Recent work from the PI's and Co- PI's labs have uncovered a mechanism for modulation of mRNA stability in neurons. The RNA binding proteins KSRP and HuD compete for binding to GAP-43 mRNA. Both these RNA binding proteins are known to have multiple functions, and our data suggest that KSRP and HuD have antagonistic functions. For GAP-43 mRNA, KSRP binding destabilizes the transcript while HuD binding stabilizes the transcript. By initial CLIP analyses, KSRP and HuD can bind to overlapping cohorts of mRNAs and cytoplasmic KSRP appears to provide a governor to limit neurite length by destabilizing mRNAs. These data have led us to hypothesize that competitive interactions of HuD and KSRP with specific cohorts of ARE-containing mRNAs control the temporal and spatial pattern of neuronal protein expression during the initiation and termination of neurite outgrowth through changes in mRNA stability. We will test this hypothesis with three specific aims: 1) Does KSRP destabilize neuronal mRNA cohorts? 2) Do KSRP or HuD interactions alter stability of localized mRNAs? 3) Do KSRP and HuD compete for binding to a shared cohort of mRNAs with antagonistic functions? Completion of these aims will fill a gap in knowledge on mechanisms of neuronal mRNA stability and its contributions to brain development.

Public Health Relevance

Correct wiring of the nervous system requires the extension of neuronal processes that connect individual neurons to their targets. This growth of neuronal processes is precisely regulated by changes in gene expression programs. We have little understanding of how stability of gene products is regulated and how this contributes to sculpting the connectivity of the brain. The studies here focus on the molecular mechanisms of this stability and how this impacts neuronal differentiation.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
5R01NS089633-03
Application #
9278309
Study Section
Synapses, Cytoskeleton and Trafficking Study Section (SYN)
Program Officer
Riddle, Robert D
Project Start
2015-09-15
Project End
2020-05-31
Budget Start
2017-06-01
Budget End
2018-05-31
Support Year
3
Fiscal Year
2017
Total Cost
$423,922
Indirect Cost
$60,433
Name
University of South Carolina at Columbia
Department
Biology
Type
Other Domestic Higher Education
DUNS #
041387846
City
Columbia
State
SC
Country
United States
Zip Code
29208
Terenzio, Marco; Koley, Sandip; Samra, Nitzan et al. (2018) Locally translated mTOR controls axonal local translation in nerve injury. Science 359:1416-1421
Oliver, R J; Brigman, J L; Bolognani, F et al. (2018) Neuronal RNA-binding protein HuD regulates addiction-related gene expression and behavior. Genes Brain Behav 17:e12454
Hines, Timothy J; Gao, Xu; Sahu, Subhshri et al. (2018) An Essential Postdevelopmental Role for Lis1 in Mice. eNeuro 5:
Kar, Amar N; Lee, Seung Joon; Twiss, Jeffery L (2018) Expanding Axonal Transcriptome Brings New Functions for Axonally Synthesized Proteins in Health and Disease. Neuroscientist 24:111-129
Sahoo, Pabitra K; Lee, Seung Joon; Jaiswal, Poonam B et al. (2018) Axonal G3BP1 stress granule protein limits axonal mRNA translation and nerve regeneration. Nat Commun 9:3358
Sahoo, Pabitra K; Smith, Deanna S; Perrone-Bizzozero, Nora et al. (2018) Axonal mRNA transport and translation at a glance. J Cell Sci 131:
Gomes, Cynthia; Lee, Seung Joon; Gardiner, Amy S et al. (2017) Axonal localization of neuritin/CPG15 mRNA is limited by competition for HuD binding. J Cell Sci 130:3650-3662
Twiss, Jeffery L; Fainzilber, Mike (2016) Neuroproteomics: How Many Angels can be Identified in an Extract from the Head of a Pin? Mol Cell Proteomics 15:341-3
Twiss, Jeffery L; Kalinski, Ashley L; Sachdeva, Rahul et al. (2016) Intra-axonal protein synthesis - a new target for neural repair? Neural Regen Res 11:1365-1367
Briata, Paola; Bordo, Domenico; Puppo, Margherita et al. (2016) Diverse roles of the nucleic acid-binding protein KHSRP in cell differentiation and disease. Wiley Interdiscip Rev RNA 7:227-40

Showing the most recent 10 out of 12 publications