The global burden of stroke is substantial and growing, yet our ability to treat acute ischemic stroke is severely limited. Although considerable effort has been made in the past 2 decades, neuroprotective agents for treatment of acute stroke have largely failed in clinical trials. The success of thrombolysis and endovascular treatment demonstrates that rapid reperfusion of the ischemic brain is an effective means to prevent injury; however, these therapies are currently limited by a short time window for which it provides benefit and low rates of reperfusion. The long-term goal of this project is to understand how post-ischemic reperfusion affects brain parenchymal arterioles (PAs) - high resistance pre-capillary vessels - in ways that would limit blood flow to the ischemic region, increase perfusion deficit, and promote expansion of infarct. Our central hypothesis is that ischemia and reperfusion (I/R) cause excessive vasoconstriction of PAs that promotes incomplete reperfusion and restriction of capillary flow. We further hypothesize that chronic hypertension, a common co- morbid condition of stroke patients, increases PA vasoconstriction and impairs vasodilation through endothelial dysfunction, restricting reperfusion and worsening stroke outcome. These hypotheses are based on our preliminary studies that demonstrate that unlike middle cerebral arteries that undergo prolonged vasodilation in response to I/R, PAs have enhanced tone due to calcium sensitization of PA smooth muscle. Constriction of PAs is associated with diminished reperfusion, leading us to hypothesize that increased small vessel resistance during I/R is an important contributor to incomplete reperfusion and expansion of infarct. Thus, Aim 1 is to investigate mechanisms of PA vasoconstriction during I/R and its relationship to infarct expansion. We will determine the relationship between PA vasoconstriction and perfusion deficit during I/R, and investigate mechanisms by which I/R promote smooth muscle calcium sensitization, including oxidative stress activation of Rho A kinase and protein kinase C. Our preliminary studies using spontaneously hypertensive stroke prone rats (SHRSP) found that PAs have increased tone prior to and after stroke that is associated with impaired endothelial potassium channel function, including small- and intermediate-conductance calcium-activated (SKCa/IKCa) and inward rectifier (Kir) potassium channels that may be central to vasodilation and increasing reperfusion blood flow. Thus, Aim 2 is to investigate mechanisms by which hypertension enhances PA vasoconstriction and perfusion deficit. We will determine the relationship between PA tone, smooth muscle calcium and membrane depolarization during hypertension and the role of angiotensin II in increasing L-type calcium channel activity and endothelin-1 production. We will also investigate mechanisms of potassium channel dysfunction in PAs during hypertension and their role in impaired vasodilation and infarction. The proposed studies will provide critically needed information on PA dysfunction during I/R and hypertension that is likely to be vital in relation to development of new but effective stroke therapy.

Public Health Relevance

The proposed studies will provide critically needed information on brain parenchymal arteriole dysfunction following ischemic stroke and in response to chronic hypertension, as a key determinant of perfusion deficit and infarction. A greater understanding of how ischemia and reperfusion affect this key segment of the vasculature is likely to be critical in relation to development of new but effective stroke therapy

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Research Project (R01)
Project #
5R01NS093289-02
Application #
9059201
Study Section
Brain Injury and Neurovascular Pathologies Study Section (BINP)
Program Officer
Koenig, James I
Project Start
2015-07-01
Project End
2020-04-30
Budget Start
2016-05-01
Budget End
2017-04-30
Support Year
2
Fiscal Year
2016
Total Cost
Indirect Cost
Name
University of Vermont & St Agric College
Department
Neurology
Type
Schools of Medicine
DUNS #
066811191
City
Burlington
State
VT
Country
United States
Zip Code
Chan, Siu-Lung; Bishop, Nicole; Li, Zhaojin et al. (2018) Inhibition of PAI (Plasminogen Activator Inhibitor)-1 Improves Brain Collateral Perfusion and Injury After Acute Ischemic Stroke in Aged Hypertensive Rats. Stroke 49:1969-1976
Li, Zhaojin; Bishop, Nicole; Chan, Siu-Lung et al. (2018) Effect of TTC Treatment on Immunohistochemical Quantification of Collagen IV in Rat Brains after Stroke. Transl Stroke Res 9:499-505
Cipolla, Marilyn J; Sweet, Julie G; Chan, Siu-Lung (2017) Effect of hypertension and peroxynitrite decomposition with FeTMPyP on CBF and stroke outcome. J Cereb Blood Flow Metab 37:1276-1285
Chan, Siu-Lung; Cipolla, Marilyn J (2017) Treatment with low dose fasudil for acute ischemic stroke in chronic hypertension. J Cereb Blood Flow Metab 37:3262-3270
Linfante, Italo; Cipolla, Marilyn J (2016) Improving Reperfusion Therapies in the Era of Mechanical Thrombectomy. Transl Stroke Res 7:294-302
Ahnstedt, Hilda; Sweet, Julie; Cruden, Patrick et al. (2016) Effects of Early Post-Ischemic Reperfusion and tPA on Cerebrovascular Function and Nitrosative Stress in Female Rats. Transl Stroke Res 7:228-38
Ahnstedt, Hilda; McCullough, Louise D; Cipolla, Marilyn J (2016) The Importance of Considering Sex Differences in Translational Stroke Research. Transl Stroke Res 7:261-73
Canavero, Isabella; Sherburne, Helene A; Tremble, Sarah M et al. (2016) Effects of Acute Stroke Serum on Non-Ischemic Cerebral and Mesenteric Vascular Function. Transl Stroke Res 7:156-65
Chan, Siu-Lung; Sweet, Julie G; Bishop, Nicole et al. (2016) Pial Collateral Reactivity During Hypertension and Aging: Understanding the Function of Collaterals for Stroke Therapy. Stroke 47:1618-25
Sweet, Julie G; Chan, Siu-Lung; Cipolla, Marilyn J (2015) Effect of hypertension and carotid occlusion on brain parenchymal arteriole structure and reactivity. J Appl Physiol (1985) 119:817-23

Showing the most recent 10 out of 11 publications