Growth plate development is critical for longitudinal bone growth. This process, including chondrocyte proliferation, maturation and hypertrophy, mineralization, matrix remodeling and transition from cartilage to bone, is tightly controlled by circulating systemic hormones and locally produced growth factors. However, the regulatory mechanisms have not been fully elucidated. Previous studies noticed that altering epidermal growth factor receptor (EGFR) activity resulted in abnormal growth plate structures but the detailed molecular mechanisms have not been studied yet. We recently found that young growing rats treated with EGFR-specific inhibitors developed profound defects in growth plate cartilage characterized by epiphyseal growth plate thickening and massive accumulation of hypertrophic chondrocytes. Further studies demonstrate that EGFR inhibitors suppressed the expression of matrix metalloproteinases (MMP9 and 13), increased the amount of collagen fibrils, and decreased cartilage ECM degradation in the growth plate. Consistently, TGF?, an EGFR ligand, strongly stimulated the expression of MMP9 and 13 in primary chondrocytes. Hence, we hypothesize that EGFR signaling regulates ECM degradation and replacement of hypertrophic cartilage with bone by promoting MMP expression in the growth plate. We propose the following aims to test this hypothesis: 1) determine whether chondrogenic EGFR signaling is required for cartilage degradation and growth plate development~ 2) investigate the molecular mechanisms by which EGFR signaling stimulates chondrogenic expression of MMP9 and 13. In particular, we will utilize a pharmacological rat model, a chondrocyte-specific EGFR knockout mouse model, and primary chondrocyte cultures to examine the growth plate phenotypes and analyze the underlying mechanisms. Our long-term goal is to study the role of EGFR signaling in cartilage function. Findings from this project will suggest EGFR signaling as a novel pathway regulating endochondral ossification and a potential pharmaceutical target for skeletal disorders that have abnormal cartilage degradation, including childhood growth plate disorders and osteoarthritis. In addition, as a new investigator, I will be greatly benefited from this award by generating preliminary data to be used for competing future research supports.

Public Health Relevance

Growth plate development is essential in formation and growth of the skeleton and this process is tightly controlled by growth factors. This proposal wil investigate the role of a novel growth factor signaling in regulating growth plate development and successfully accomplishing it will achieve a better management of diseases associated with growth defects, such as chondrodysplasia, retarded growth and reduced final height, fracture healing, and degenerative cartilage diseases, such as osteoarthritis.

Agency
National Institute of Health (NIH)
Institute
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Type
Small Research Grants (R03)
Project #
5R03AR060991-02
Application #
8441536
Study Section
Special Emphasis Panel (ZAR1-EHB (M1))
Program Officer
Tyree, Bernadette
Project Start
2012-08-01
Project End
2015-07-31
Budget Start
2013-08-01
Budget End
2014-07-31
Support Year
2
Fiscal Year
2013
Total Cost
$76,000
Indirect Cost
$28,500
Name
University of Pennsylvania
Department
Orthopedics
Type
Schools of Medicine
DUNS #
042250712
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Jia, Haoruo; Ma, Xiaoyuan; Wei, Yulong et al. (2018) Loading-Induced Reduction in Sclerostin as a Mechanism of Subchondral Bone Plate Sclerosis in Mouse Knee Joints During Late-Stage Osteoarthritis. Arthritis Rheumatol 70:230-241
Tong, Wei; Lu, Zhouyu; Qin, Ling et al. (2017) Cell therapy for the degenerating intervertebral disc. Transl Res 181:49-58
Doyran, B; Tong, W; Li, Q et al. (2017) Nanoindentation modulus of murine cartilage: a sensitive indicator of the initiation and progression of post-traumatic osteoarthritis. Osteoarthritis Cartilage 25:108-117
Jia, Haoruo; Ma, Xiaoyuan; Tong, Wei et al. (2016) EGFR signaling is critical for maintaining the superficial layer of articular cartilage and preventing osteoarthritis initiation. Proc Natl Acad Sci U S A 113:14360-14365
Scanzello, Carla R; Markova, Dessislava Z; Chee, Ana et al. (2015) Fibronectin splice variation in human knee cartilage, meniscus and synovial membrane: observations in osteoarthritic knee. J Orthop Res 33:556-62
Zhang, Xianrong; Zhu, Ji; Liu, Fei et al. (2014) Reduced EGFR signaling enhances cartilage destruction in a mouse osteoarthritis model. Bone Res 2:14015
Zhang, Xianrong; Zhu, Ji; Li, Yumei et al. (2013) Epidermal growth factor receptor (EGFR) signaling regulates epiphyseal cartilage development through ?-catenin-dependent and -independent pathways. J Biol Chem 288:32229-40