Inrecentyears,therehasbeensignificantuseofironoxidenanoparticles(IONPs)with tailoredpropertiesfordevelopingnewinvivobiomedicalapplications.However,there arestillunansweredquestionsregardingtheincorporationofIONPsintothemetabolic cycle,includingtheeffectofmodifyingthesizeandfunctionalizationofthe nanoparticles,whichisessentialforspecificclinicaluses.Theexactprocessof agglomeration,degradation,andabsorption/clearancebythebodyisnotcompletely understood,particularlyhowtheseprocessesareaffectedbyphysicalandchemical propertiesofIONPs.Quantifyingthebiodistribution,transformation,andmetabolismof IONPsisanessentialstepinthedevelopmentoftheseapplicationsforclinicaluse.We proposetodevelopaquantitativemethodtodeterminethelongterminvivofateof IONPsbycombiningACsusceptibilitymeasurementswithmodelingofmagnetic relaxationandradionuclidelabeledSPECT/CTimaging.Theout-of-phaseAC susceptibilityprofileishighlydependentonthequantity,size,anddegreeof agglomerationoftheparticles,andACsusceptibilitymeasurementscandifferentiate betweennanoparticles,ironstorageproteins(ferritinandhemosiderin),and endogenousiron.Consequently,withinvivoexperimentsusingrodentmodels,this methodwillallowustoquantitativelydeterminethecompletebiodistribution, transformation,andparticokineticsofIONPsasafunctionoftheirsizeandsurface coating.Initialworkwillbeonparticlecorediametersoptimizedfortranslationalimaging inMRI(T1contrast)andtheemergingtechniqueofMagneticParticleImaging.Eachof thesewillbefunctionalizedwitheitherbiodegradable(polysaccharides)ornon- degradable(polyetheleneglycol)coatings,toevaluatetheeffectofsurfacecoatingson themetabolismandbiologicalfateofnanoparticles.SelectIONPswillalsobe radionuclidelabeledforSPECT/CTimagingforquantitativecomparisonandevaluation, whichwillprovideadditionalinformationaboutthedegradationoftheparticles.In summary,ourmethodwillprovideaprecise,quantitativedescriptionofthe particokineticsandultimatefateofIONPsinvivo,acrucialsteptowardsunderstanding theiroveralltoxicity,metabolism,andlong-termfate,withpotentialconsequenceinthe widerangeofclinicalapplicationswhereIONPsareadministered.

Public Health Relevance

Superparamagneticironoxidenanoparticlesarecurrentlyproposedforawiderangeof biomedicalapplications;?however,theexactprocessofthemetabolismofironinthe bodyisnotwellunderstood.Weproposetotakeadvantageoftheuniquemagnetic propertiesofthesenanoparticlesinordertostudythemetabolismandultimatefateof thesenanoparticlesinthebody.Withaspecificmagneticmeasurement(out-of-phase ACsusceptibility),wecanquantitativelytrackthebiodistribution,transformation,and degradationoftheseparticlesinabiologicalsystem.Thisisacrucialsteptowards understandingtheoveralltoxicityandlong-termfateoftheparticles,withpotential consequenceinthewiderangeofclinicalapplicationswhereironoxidenanoparticles areadministered.

Agency
National Institute of Health (NIH)
Institute
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Type
Small Research Grants (R03)
Project #
1R03EB024819-01
Application #
9373718
Study Section
Biomedical Imaging Technology Study Section (BMIT)
Program Officer
Wang, Shumin
Project Start
2017-08-10
Project End
2019-05-31
Budget Start
2017-08-10
Budget End
2018-05-31
Support Year
1
Fiscal Year
2017
Total Cost
Indirect Cost
Name
University of Washington
Department
Engineering (All Types)
Type
Biomed Engr/Col Engr/Engr Sta
DUNS #
605799469
City
Seattle
State
WA
Country
United States
Zip Code
98195