To produce viable progeny, cells must identify the products of chromosome replication as sister chromatids from S-phase until chromosome segregation. Sister chromatid identity is achieved by a combination of complexes: 1) cohesin tethers that maintain pairing over time, 2) deposition factors that load cohesins onto sister chromatids and 3) establishment factors that convert chromatin-associated cohesins into a paired or tethered state. All of these cohesion pathways are essential such that mutation in any one (maintenance, deposition and establishment) results in massive chromosome mis-segregation and cell death. Many of the phenotypes observed in cohesion loss mutants (aneuploidy, genome instability, defects in DNA repair, hyper- recombination and chromosomal translocations) are direct consequences of precocious sister separation and loss of a repair template - all hallmarks of cancer cells. More recent findings reveal a surprising link between cohesion defects and developmental abnormalities that include Cornelia de Lange Syndrome and Roberts Syndrome/SC Phocomelia. At the molecular level, the first establishment model posited in the literature suggested that cohesin complexes associated with each sister become tethered together through an active process that is intimately coupled to the DNA replication fork. Findings from several labs confirm the link between the establishment factor (Ctf7/Eco1) and numerous DNA replication components that include PCNA, RFC factors, and DNA helicases. Moreover, recent reports provide important clues regarding Ctf7/Eco1 acetylation-dependent conversion of cohesins to a pairing competent state and how precocious conversion (pairing) is blocked by anti-establishment factors.
The Specific Aims of this R15 AREA proposal test new models of establishment by focusing on the role of both pro- and anti- establishment DNA replication factors in cohesion acetylation reactions. In addition, we test models regarding chromatin recruitment and activation of the essential establishment factor Ctf7/Eco1.)

Public Health Relevance

Chromosomes contain the instruction manual for cells and organisms to grow and develop. For growth during embryonic development, in response to trauma or to replace cells in a harsh environment (gastro-intestinal tracts), cells must replicate their chromosomes and then divide such that each daughter cell gets an identical copy. This proposal explores new models regarding how these replicated chromosomes are properly segregated during cell division.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Academic Research Enhancement Awards (AREA) (R15)
Project #
Application #
Study Section
Nuclear and Cytoplasmic Structure/Function and Dynamics Study Section (NCSD)
Program Officer
Janes, Daniel E
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Lehigh University
Schools of Arts and Sciences
United States
Zip Code
Tong, Kevin; Skibbens, Robert V (2015) Pds5 regulators segregate cohesion and condensation pathways in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 112:7021-6
Tong, Kevin; Skibbens, Robert V (2014) Cohesin without cohesion: a novel role for Pds5 in Saccharomyces cerevisiae. PLoS One 9:e100470
Rudra, Soumya; Skibbens, Robert V (2013) Cohesin codes - interpreting chromatin architecture and the many facets of cohesin function. J Cell Sci 126:31-41
Skibbens, Robert V; Colquhoun, Jennifer M; Green, Megan J et al. (2013) Cohesinopathies of a feather flock together. PLoS Genet 9:e1004036
Rudra, Soumya; Skibbens, Robert V (2013) Chl1 DNA helicase regulates Scc2 deposition specifically during DNA-replication in Saccharomyces cerevisiae. PLoS One 8:e75435
Rudra, Soumya; Skibbens, Robert V (2012) Sister chromatid cohesion establishment occurs in concert with lagging strand synthesis. Cell Cycle 11:2114-21
Skibbens, Robert V; Marzillier, Jutta; Eastman, Laura (2010) Cohesins coordinate gene transcriptions of related function within Saccharomyces cerevisiae. Cell Cycle 9:1601-6
Skibbens, Robert V (2010) A sliding scale: the many faces of Ctf7/Eco1 cohesion establishment factor in DNA repair. Cell Cycle 9:3642-3
Maradeo, Marie E; Garg, Anisha; Skibbens, Robert V (2010) Rfc5p regulates alternate RFC complex functions in sister chromatid pairing reactions in budding yeast. Cell Cycle 9:4370-8
Maradeo, Marie E; Skibbens, Robert V (2010) Replication factor C complexes play unique pro- and anti-establishment roles in sister chromatid cohesion. PLoS One 5:e15381

Showing the most recent 10 out of 13 publications